当前位置: X-MOL 学术J. Chin. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual Z-scheme ternary heterojunction photocatalyst with enhanced visible-light photocatalytic degradation of organic pollutants
Journal of the Chinese Chemical Society ( IF 1.8 ) Pub Date : 2023-11-28 , DOI: 10.1002/jccs.202300373
Fangzhou Wu 1, 2 , Ying Liu 1, 2 , Xiyu Chen 2 , Jun Han 2 , De Hu 2 , Wei Wang 1, 2 , Shufen Wang 3
Affiliation  

Photocatalysis technology driven by solar energy is considered to be promising for solving energy crisis and environmental problems. Graphitic carbon nitride has been widely researched in the photocatalysis field due to its suitable band positions, non-toxicity, easy synthesis, high stability, and low cost. However, the slow separation and rapid recombination of photogenerated carriers, the poor visible light response and the low specific surface area seriously limit the photocatalytic activity of g-C3N4. Here, firstly, g-C3N4 nanosheets with a large specific surface area of 152.2 m2 g−1 which provide more surface-active sites for photocatalysis were prepared by secondary calcination method. Next, MoS2 and metal–organic framework (MIL-101(Cr)) were tightly bonded on g-C3N4 nanosheets to form ternary g-C3N4/MoS2/MIL-101(Cr) heterojunction photocatalyst. In which, a ternary dual Z-scheme heterojunction photocatalyst composed of g-C3N4, MoS2, and MIL-101(Cr) was constructed to facilitate the separation and the migration of photogenerated charges. At the same time, MoS2 enhanced the visible light response of the ternary photocatalyst. The optimal ternary photocatalyst displayed the highest activity for methyl orange degradation (degradation efficiency of 98% in 60 min) under visible light irradiation. Finally, a photocatalytic mechanism of a dual Z-scheme electron transfer channel and h+-·O2 double oxidation sites were proposed and discussed.

中文翻译:

双Z型三元异质结光催化剂增强可见光光催化降解有机污染物

以太阳能驱动的光催化技术被认为有望解决能源危机和环境问题。石墨氮化碳以其合适的能带位置、无毒、易于合成、稳定性高、成本低等优点在光催化领域得到了广泛的研究。然而,光生载流子的缓慢分离和快速复合、较差的可见光响应和较低的比表面积严重限制了gC 3 N 4的光催化活性。这里,首先,通过二次煅烧方法制备了具有152.2m 2  g -1的大比表面积的gC 3 N 4纳米片,其为光催化提供了更多的表面活性位点。接下来,MoS 2和金属有机骨架(MIL-101(Cr))紧密结合在gC 3 N 4纳米片上,形成三元gC 3 N 4 /MoS 2 /MIL-101(Cr)异质结光催化剂。其中,构建了由gC 3 N 4、MoS 2和MIL-101(Cr)组成的三元双Z型异质结光催化剂,以促进光生电荷的分离和迁移。同时,MoS 2增强了三元光催化剂的可见光响应。最佳三元光催化剂在可见光照射下表现出最高的甲基橙降解活性(60 min 降解效率达 98%)。最后,提出并讨论了双Z型电子传递通道和h + -·O 2 -双氧化位点的光催化机理。
更新日期:2023-11-28
down
wechat
bug