当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Octopus-inspired sensorized soft arm for environmental interaction
Science Robotics ( IF 25.0 ) Pub Date : 2023-11-29 , DOI: 10.1126/scirobotics.adh7852
Zhexin Xie 1, 2 , Feiyang Yuan 1 , Jiaqi Liu 1 , Lufeng Tian 1 , Bohan Chen 1 , Zhongqiang Fu 1 , Sizhe Mao 1 , Tongtong Jin 1 , Yun Wang 1 , Xia He 1 , Gang Wang 1 , Yanru Mo 1 , Xilun Ding 1 , Yihui Zhang 3 , Cecilia Laschi 2 , Li Wen 1
Affiliation  

Octopuses can whip their soft arms with a characteristic “bend propagation” motion to capture prey with sensitive suckers. This relatively simple strategy provides models for robotic grasping, controllable with a small number of inputs, and a highly deformable arm with sensing capabilities. Here, we implemented an electronics-integrated soft octopus arm (E-SOAM) capable of reaching, sensing, grasping, and interacting in a large domain. On the basis of the biological bend propagation of octopuses, E-SOAM uses a bending-elongation propagation model to move, reach, and grasp in a simple but efficient way. E-SOAM’s distal part plays the role of a gripper and can process bending, suction, and temperature sensory information under highly deformed working states by integrating a stretchable, liquid-metal–based electronic circuit that can withstand uniaxial stretching of 710% and biaxial stretching of 270% to autonomously perform tasks in a confined environment. By combining this sensorized distal part with a soft arm, the E-SOAM can perform a reaching-grasping-withdrawing motion across a range up to 1.5 times its original arm length, similar to the biological counterpart. Through a wearable finger glove that produces suction sensations, a human can use just one finger to remotely and interactively control the robot’s in-plane and out-of-plane reaching and grasping both in air and underwater. E-SOAM’s results not only contribute to our understanding of the function of the motion of an octopus arm but also provide design insights into creating stretchable electronics-integrated bioinspired autonomous systems that can interact with humans and their environments.

中文翻译:

受章鱼启发的传感软臂,用于环境交互

章鱼可以用特有的“弯曲传播”运动来鞭打它们的软臂,用敏感的吸盘捕捉猎物。这种相对简单的策略为机器人抓取提供了模型,可以通过少量输入进行控制,并且具有具有传感功能的高度可变形手臂。在这里,我们实现了一种电子集成软章鱼臂(E-SOAM),能够在大范围内进行触及、感知、抓取和交互。E-SOAM以章鱼的生物弯曲传播为基础,利用弯曲-伸长传播模型以简单而高效的方式移动、到达和抓取。E-SOAM的远端部分起到夹具的作用,通过集成可拉伸的液态金属电子电路,可以承受710%的单轴拉伸和双轴拉伸,在高度变形的工作状态下处理弯曲、吸力和温度传感信息270% 能够在有限的环境中自主执行任务。通过将这种传感远端部分与软臂相结合,E-SOAM 可以在长达 1.5 倍其原始臂长的范围内执行伸手-抓握-撤回动作,类似于生物对应物。通过产生吸力感觉的可穿戴手指手套,人类只需用一根手指即可远程交互地控制机器人在空中和水下的平面内和平面外的接触和抓取。E-SOAM 的结果不仅有助于我们理解章鱼手臂的运动功能,而且还为创建可与人类及其环境交互的可拉伸电子集成生物启发自主系统提供了设计见解。
更新日期:2023-11-29
down
wechat
bug