当前位置: X-MOL 学术Sens. Bio-Sens. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials for detection of ascorbic acid, dopamine, and uric acid: A review
Sensing and Bio-Sensing Research Pub Date : 2023-11-28 , DOI: 10.1016/j.sbsr.2023.100610
Girma Salale Geleta

The demand for analysing biological molecules such as dopamine (DA), ascorbic acid (AA), and uric acid (UA) is growing more than ever in applied science for better health and medicine. Over the past two decades, molecular imprinted polmers (MIPs) have been developed as synthetic receptors or substitute materials for antibodies due to their high stability, short time needed for electropolymerization, and high specificity towards the target analyte. However, the sensitivity of electrochemical sensors decreased as a result of MIPs' low conductivity and lack of electrocatalytic activity. To overcome this limitation, nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), graphene (GR), titanium carbide MXene (TiCT), carbon dots (CDs), molybdenum diselenide (MoSe), and black phosphorus quantum dots (BPQDs) and their nanocomposites have been employed as biosensing transducers to construct MIPs based on electrochemical biosensors for cost-effective detection of biological molecules with high sensitivity and specificity. This is because the high surface area, good electrical conductivity, and ease of functionalization of nanomaterials all increase MIP sensitivity to targeted biological molecules. When these advantages of nanomaterials are combined with those of electrochemical methods, such as rapid response time, ease of use, low cost, and miniature ability, MIPs based on nanomaterial-modified electrodes are widely preferred tools for sensing AA, DA, and UA. Herein, this review provides insight into recent developments in the application of molecularly imprinted polymer (MIP) nanomaterial-based electrochemical biosensors for detecting biological molecules, including AA, DA, and UA. The integration of nanomaterials with MIPs into electrochemical biosensors has led to an unprecedented impact on improving the limit of detection of biomolecules, indicating great potential for use in public health and medical care.

中文翻译:

基于分子印迹聚合物和纳米材料的用于检测抗坏血酸、多巴胺和尿酸的电化学传感器的最新进展:综述

为了改善健康和医学,应用科学对分析多巴胺 (DA)、抗坏血酸 (AA) 和尿酸 (UA) 等生物分子的需求比以往任何时候都增长。在过去的二十年中,分子印迹聚合物(MIP)因其稳定性高、电聚合所需时间短以及对目标分析物的高特异性而被开发为合成受体或抗体的替代材料。然而,由于MIPs的低电导率和缺乏电催化活性,电化学传感器的灵敏度下降。为了克服这一限制,纳米材料如金纳米颗粒(AuNP)、碳纳米管(CNT)、石墨烯(GR)、碳化钛MXene(TiCT)、碳点(CD)、二硒化钼(MoSe)和黑磷量子点( BPQD)及其纳米复合材料已被用作生物传感传感器,构建基于电化学生物传感器的MIP,以经济有效地检测具有高灵敏度和特异性的生物分子。这是因为纳米材料的高表面积、良好的导电性和易于功能化的特点都增加了 MIP 对目标生物分子的敏感性。当纳米材料的这些优点与电化学方法的优点(例如快速响应时间、易于使用、低成本和微型能力)相结合时,基于纳米材料修饰电极的 MIP 成为传感 AA、DA 和 UA 的广泛首选工具。本文综述了基于分子印迹聚合物 (MIP) 纳米材料的电化学生物传感器在检测生物分子(包括 AA、DA 和 UA)方面的应用的最新进展。将纳米材料与 MIP 集成到电化学生物传感器中,对提高生物分子的检测限产生了前所未有的影响,表明其在公共卫生和医疗保健领域的巨大应用潜力。
更新日期:2023-11-28
down
wechat
bug