当前位置: X-MOL 学术Nano. Commun. Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilizing a Novel Universal Quantum Gate in the Design of Fault-Tolerant Architecture
Nano Communication Networks ( IF 2.9 ) Pub Date : 2023-12-02 , DOI: 10.1016/j.nancom.2023.100482
Neeraj Kumar Misra , Bandan Kumar Bhoi , Sankit R Kassa

In nano communication, fault-tolerant networks play a crucial role in error control. A significant practical challenge for nanocircuits is their ability to transmit information over networks to different endpoints. Fault-tolerant and reversible circuits have control error problems. The advantage of a quantum gate-based architecture is that it prevents heat loss, and it has been extensively researched. In this article, we have developed reversible multiplexers (mux's), half-adder (HA), and full-adder (FA) and latches that are fault-tolerant by making use of new gate and implementing them on the IBM Qiskit platform. A power-efficient and fault-tolerant mux's and latches is proposed that uses reversible gates to preserve parity. Multiplexer kinds such as 2:1, 4:1, and n:1 is covered in depth by the new Parity Preserving Multiplexer (PPM) gate and verified by IBM-Qiskit. An algorithmic design for an n:1 multiplexer is invented. In order to assess a PPM gate effectiveness, 13 standard Boolean functions and 8 standard types of gates are implemented. The PPM quantum gate is built using quantum assembly code (QAC), which runs on IBM Quantum Lab and IBM Quantum Composer platforms to measure the output qubits. Additional HA, muxes, and latches design led to the code creation in the Qiskit platform, which was used to measure the output qubits. A comparison of the D-latch, T-latch, JK-latch, and mux designs with existing circuits shows a reduction in quantum cost (qc) and junk output (go) and the implementation of a custom design in the IBM-Qiskit platform to measure output qubits is a first time in literature.

中文翻译:

在容错架构设计中利用新型通用量子门

在纳米通信中,容错网络在错误控制中发挥着至关重要的作用。纳米电路面临的一个重大实际挑战是它们通过网络将信息传输到不同端点的能力。容错和可逆电路存在控制错误问题。基于量子门的架构的优点是可以防止热量损失,并且已经得到了广泛的研究。在本文中,我们通过利用新门并在 IBM Qiskit 平台上实现它们,开发了可逆多路复用器 (mux)、半加器 (HA) 和全加器 (FA) 以及容错锁存器。提出了一种高能效且容错的多路复用器和锁存器,其使用可逆门来保持奇偶校验。新的奇偶校验保留多路复用器 (PPM) 门深入涵盖了 2:1、4:1 和 n:1 等多路复用器类型,并由 IBM-Qiskit 进行了验证。发明了 n:1 多路复用器的算法设计。为了评估 PPM 门的有效性,实施了 13 个标准布尔函数和 8 种标准类型的门。PPM 量子门是使用量子汇编代码 (QAC) 构建的,该代码在 IBM Quantum Lab 和 IBM Quantum Composer 平台上运行以测量输出量子位。额外的 HA、多路复用器和锁存器设计导致了 Qiskit 平台中的代码创建,该平台用于测量输出量子位。D 锁存器、T 锁存器、JK 锁存器和多路复用器设计与现有电路的比较显示量子成本 (qc) 和垃圾输出 (go) 的降低以及 IBM-Qiskit 平台中定制设计的实现测量输出量子位在文献中还是第一次。
更新日期:2023-12-02
down
wechat
bug