当前位置: X-MOL 学术Algorithms Mol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction: Constructing founder sets under allelic and non-allelic homologous recombination
Algorithms for Molecular Biology ( IF 1 ) Pub Date : 2023-12-06 , DOI: 10.1186/s13015-023-00244-0
Konstantinn Bonnet , Tobias Marschall , Daniel Doerr


Correction: Algorithms for Molecular Biology (2023) 18:15 https://doi.org/10.1186/s13015-023-00241-3


The Additional file 1 which originally published contained errors. It has now been replaced with the correct file.

The original article [1] has been corrected.

  1. Bonnet K, Marschall T, Doerr D. Constructing founder sets under allelic and non-allelic homologous recombination. Algorithms Mol Biol. 2023;18:15. https://doi.org/10.1186/s13015-023-00241-3.

    Article PubMed PubMed Central Google Scholar

Download references

Authors and Affiliations

  1. Institute for Medical Biometry and Bioinformatics, Medical Faculty, and Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany

    Konstantinn Bonnet, Tobias Marschall & Daniel Doerr

Authors
  1. Konstantinn BonnetView author publications

    You can also search for this author in PubMed Google Scholar

  2. Tobias MarschallView author publications

    You can also search for this author in PubMed Google Scholar

  3. Daniel DoerrView author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Tobias Marschall or Daniel Doerr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Additional file 1: Figure S1

. Reduction in the number of recombinations following minimization. The plots show the total number of recombinations before (blue dots) and after (red dots) minimization, as a function of each simulation parameter. Figure S2. Number of recombinations minimization benchmarks. Runtime (upper panels) and peak PSS (lower panels) as a function of the number of haplotypes (left) and the ratio of inverted duplications (right). Figure S3. Flow computation performance with a variable ratio of inversions. Runtime (left) and memory usage (right) as a function of this parameter. Figure S4. Visualization of a solution to the minimization problem on the 1p36.13 locus. The gray bars correspond to the graph’s nodes, labeled 1 to 8. The founder sequence (>1>2>3<7>5>2>3<4>5>5<6<4<3>7<3<2<4>5>6<5>4<5<4<3<2>7<3>6>7<3<4<3<2>6<4>3>2>7>8) is traced from top to bottom. A slanted line indicates the underlying node being traversed; if slanted rightwards, traversal is in forward direction, and if slanted leftwards, traversal is in reverse direction. Colors correspond to different haplotypes. The haplotype sequence is: EUR-HG00171-h2, AFR-NA19036-h1, SAS-GM20847-h2, AFR-HG03065-h2, AFR-NA19036-h1, AFR-NA19036-h1, AMR-HG01573-h2, AFR-HG02011-h2, AFR-HG03371-h2, SAS-HG03683-h2. Recombinations are marked with a star. Table S1. Sorted haplotype marker sequences used for analyzing the 1p36.13 locus.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnet, K., Marschall, T. & Doerr, D. Correction: Constructing founder sets under allelic and non-allelic homologous recombination. Algorithms Mol Biol 18, 20 (2023). https://doi.org/10.1186/s13015-023-00244-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13015-023-00244-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:

更正:在等位基因和非等位基因同源重组下构建创始人集


更正:分子生物学算法 (2023) 18:15 https://doi.org/10.1186/s13015-023-00241-3


最初发布的附加文件 1 包含错误。现在它已被替换为正确的文件。

原文章[1]已更正。

  1. Bonnet K、Marschall T、Doerr D. 在等位基因和非等位基因同源重组下构建创始人集。分子生物学算法。2023 年;18:15。https://doi.org/10.1186/s13015-023-00241-3。

    文章 PubMed PubMed Central Google Scholar

下载参考资料

作者和单位

  1. 海因里希海涅大学医学生物测量和生物信息学研究所、医学院和数字医学中心,Moorenstr。5, 40225, 杜塞尔多夫, 德国

    康斯坦丁·博内特、托比亚斯·马歇尔和丹尼尔·杜尔

作者
  1. Konstantinn Bonnet查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  2. 托比亚斯·马歇尔查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  3. 丹尼尔·杜尔查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

通讯作者

通讯作者:Tobias Marschall 或 Daniel Doerr。

出版商备注

施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。

附加文件1:图S1

。最小化后重组数量减少。该图显示了最小化之前(蓝点)和之后(红点)的重组总数,作为每个模拟参数的函数。图S2。重组数量最小化基准。运行时间(上图)和峰值 PSS(下图)作为单倍型数量(左)和反向重复比率(右)的函数。图S3。具有可变反演比率的流计算性能。运行时(左)和内存使用(右)作为该参数的函数。图S4。1p36.13 轨迹上最小化问题解决方案的可视化。灰色条对应于图的节点,标记为 1 到 8。创始人序列 (>1>2>3<7>5>2>3<4>5>5<6<4<3>7<3<2 <4>5>6<5>4<5<4<3<2>7<3>6>7<3<4<3<2>6<4>3>2>7>8) 追踪自从上到下。斜线表示正在遍历的底层节点;如果向右倾斜,则为正向遍历;如果向左倾斜,则为反向遍历。颜色对应不同的单倍型。单倍型序列为:EUR-HG00171-h2、AFR-NA19036-h1、SAS-GM20847-h2、AFR-HG03065-h2、AFR-NA19036-h1、AFR-NA19036-h1、AMR-HG01573-h2、AFR-HG02011 -h2、AFR-HG03371-h2、SAS-HG03683-h2。重组用星号标记。表S1。用于分析 1p36.13 基因座的排序单倍型标记序列。

开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的出处中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域奉献豁免 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文中提供的数据,除非数据的信用额度中另有说明。

转载和许可

检查更新。 通过 CrossMark 验证货币和真实性

引用这篇文章

Bonnet, K.、Marschall, T. 和 Doerr, D. 更正:在等位基因和非等位基因同源重组下构建创始人集。算法分子生物学 18 , 20 (2023)。https://doi.org/10.1186/s13015-023-00244-0

下载引文

  • 发表

  • DOI https://doi.org/10.1186/s13015-023-00244-0

分享此文章

您与之分享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

更新日期:2023-12-06
down
wechat
bug