当前位置: X-MOL 学术Biomech. Model. Mechanobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical communication within the microtubule through network-based analysis of tubulin dynamics
Biomechanics and Modeling in Mechanobiology ( IF 3.5 ) Pub Date : 2023-12-07 , DOI: 10.1007/s10237-023-01792-5
Marco Cannariato , Eric A. Zizzi , Lorenzo Pallante , Marcello Miceli , Marco A. Deriu

The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that \(\beta\)-tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different \(\beta\)-tubulin isotypes.



中文翻译:

通过基于网络的微管蛋白动力学分析实现微管内的机械通讯

识别蛋白质复合物中机械振动传递的机制对于理解这些超级组件如何稳定以在细胞内执行特定功能至关重要。在这种背景下,考虑到微管(MT)在细胞活力中的关键作用,对微管(MT)内的结构通讯和机械刺激传播的研究非常重要。在本研究中,我们采用分子建模和动态网络分析方法来分析 MT。结果强调,β-微管蛋白驱动原丝(PF)之间的机械信息传递,由于不同的相互作用模式,该传递在接缝处发生改变。此外,虽然沿 PF 的结构通讯涉及的关键残基通常是保守的,但介导横向通讯的氨基酸观察到更高的多样性。总而言之,这些结果可以解释为什么具有不同 PF 数的 MT 在不同的生物体中形成或具有不同的β-微管蛋白同种型。

更新日期:2023-12-08
down
wechat
bug