当前位置: X-MOL 学术Isr. J. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Orbit configuration spaces and the homotopy groups of the pair $$(\prod\nolimits_1^n {M,{F_n}} (M))$$ for M either $${\mathbb{S}^2}$$ or ℝP2
Israel Journal of Mathematics ( IF 1 ) Pub Date : 2023-11-29 , DOI: 10.1007/s11856-023-2576-7
Daciberg Lima Gonçalves , John Guaschi

Let n ≥ 1, and let \({\iota _n}:{F_n}(M) \to \prod\nolimits_1^n M \) be the natural inclusion of the nth configuration space of M in the n-fold Cartesian product of M with itself. In this paper, we study the map ιn, the homotopy fibre In of ιn and its homotopy groups, and the induced homomorphisms (ιn)#k on the kth homotopy groups of Fn(M) and \(\prod\nolimits_1^n M \) for all k ≥ 1, where M is the 2-sphere \({\mathbb{S}^2}\) or the real projective plane ℝP2.It is well known that the group πk(In) is the homotopy group \({\pi _{k + 1}}(\prod\nolimits_1^n {M,{F_n}} (M))\) for all k ≥ 0. If k ≥ 2, we show that the homomorphism (ιn)#k is injective and diagonal, with the exception of the case n = k = 2 and \(M = {\mathbb{S}^2}\), where it is anti-diagonal. We then show that In has the homotopy type of \(K({R_{n - 1}},1) \times \Omega (\prod\nolimits_1^{n - 1} {{\mathbb{S}^2}} )\), where Rn−1 is the (n − 1)th Artin pure braid group if \(M = {\mathbb{S}^2}\), and is the fundamental group Gn−1 of the (n−1)th orbit configuration space of the open cylinder \({\mathbb{S}^2}\backslash \{ {\widetilde z_0}, - {\widetilde z_0}\} \) with respect to the action of the antipodal map of \({\mathbb{S}^2}\) if M = ℝP2, where \({\widetilde z_0} \in {\mathbb{S}^2}\). This enables us to describe the long exact sequence in homotopy of the homotopy fibration \({I_n} \to {F_n}(M)\buildrel {{\iota _n}} \over\longrightarrow \prod\nolimits_1^n M \) in geometric terms, and notably the image of the boundary homomorphism \({\pi _{k + 1}}(\prod\nolimits_1^n M ) \to {\pi _k}({I_n})\). From this, if \(M = {\mathbb{S}^2}\) and n ≥ 3 (resp. M = ℝP2 and n ≥ 2), we show that Ker((ιn)#1 ) is isomorphic to the quotient of Rn−1 by the square of its centre, as well as to an iterated semi-direct product of free groups with the subgroup of order 2 generated by the centre of Pn (M) that is reminiscent of the combing operation for the Artin pure braid groups, as well as decompositions obtained in [GG5].



中文翻译:

轨道配置空间和对 $$(\prod\nolimits_1^n {M,{F_n}} (M))$$ 的同伦群 $${\mathbb{S}^2}$$ 或 ℝP2

n ≥ 1,且令\({\iota _n}:{F_n}(M) \to \prod\nolimits_1^n M \)为Mn重笛卡尔中的第 n配置空间的自然包含M与其自身的乘积。在本文,我们研究了映射ι nι n的同伦纤维I n及其同伦群,以及F n ( M )\ ( \ prod\nolimits_1^n M \)对于所有k ≥ 1,其中M是 2-球面\({\mathbb{S}^2}\)或实射影平面 ℝ P 2。众所周知,该群π k ( I n ) 是所有k ≥ 0的同伦群\({\pi _{k + 1}}(\prod\nolimits_1^n {M,{F_n}} (M))\)。如果k ≥ 2,我们证明同态 ( ι n ) #k是单射且对角的,但n = k = 2 和\(M = {\mathbb{S}^2}\)的情况除外,其中反对角线。然后我们证明I n的同伦类型为\(K({R_{n - 1}},1) \times \Omega (\prod\nolimits_1^{n - 1} {{\mathbb{S}^2 }} )\),其中R n −1是第 ( n − 1)Artin 纯编织群 if \(M = {\mathbb{S}^2}\),并且是基本群G n −1开圆柱体的第 ( n −1)个轨道配置空间\({\mathbb{S}^2}\backslash \{ {\widetilde z_0}, - {\widetilde z_0}\} \)相对于作用如果M = ℝ P 2 ,则\({\mathbb{S}^2}\)的对映图,其中\({\widetilde z_0} \in {\mathbb{S}^2}\)。这使我们能够描述同伦纤维的长精确序列\({I_n} \to {F_n}(M)\buildrel {{\iota _n}} \over\longrightarrow \prod\nolimits_1^n M \)用几何术语来说,特别是边界同态的图像\({\pi _{k + 1}}(\prod\nolimits_1^n M ) \to {\pi _k}({I_n})\)。由此看来,如果\(M = {\mathbb{S}^2}\)n ≥ 3 (分别为M = ℝ P 2n ≥ 2),我们证明 Ker(( ι n ) #1 ) 与商同构R n −1乘以其中心的平方,以及自由群与由P n ( M ) 中心生成的 2 阶子群的迭代半直积,这让人想起了Artin纯编织组,以及[GG5]中获得的分解。

更新日期:2023-11-29
down
wechat
bug