当前位置: X-MOL 学术Nano Futures › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mesoporous silica shell in a core@shell nanocomposite design enables antibacterial action with multiple modes of action
Nano Futures ( IF 2.1 ) Pub Date : 2023-06-29 , DOI: 10.1088/2399-1984/acddb3
Ayşenur Pamukçu , M Baran Karakaplan , Şen Karaman Didem

Core@shell structured nanocomposites have received significant attention for their synergistic mode of antibacterial action. Identification of the accommodated unit’s function in the core@shell nanostructure is necessary in order to determine whether antibacterial synergism against bacterial cell growth that is provided within the same core@shell structure. Herein, a novel nanostructure(s) composed of a cerium oxide core and a porous silica shell (CeO2@pSiO2) accomodating curcumin and lectin was prepared, and the antibacterial synergism provided by the nanocomposite was identified. The resulting spherical-shaped CeO2@pSiO2 nanostructure allowed accommodation of curcumin loading (9 w/w%) and a lectin (concanavalin A) coating (15 w/w%). The antibacterial synergism was tested using a minimal inhibitory concentration assay against an Escherichia coli Gram-negative bacterial strain. Furthermore, the mechanisms of bacterial cell disruption induced by the curcumin-loaded and concanavalin A-coated CeO2@pSiO2 core@shell structure, namely the nanoantibiotic (nano-AB) and its design components, were identified. Our findings reveal that the mesoporous silica shell around the CeO2 core within the nano-AB design aids the accommodation of curcumin and concanavalin A and promotes destruction of bacterial cell motility and the permeability of the inner and outer bacterial cell membranes. Our findings strongly indicate the promising potential of a mesoporous silica shell around nanoparticles with a CeO2 core to provide synergistic antibacterial treatment and attack bacterial cells by different mechanisms of action.

中文翻译:


核@壳纳米复合材料设计中的介孔二氧化硅壳能够以多种作用模式发挥抗菌作用



核@壳结构纳米复合材料因其协同抗菌作用模式而受到广泛关注。为了确定同一核@壳结构中是否对细菌细胞生长具有抗菌协同作用,有必要鉴定核@壳纳米结构中容纳单元的功能。在此,制备了一种由氧化铈核和多孔二氧化硅壳(CeO 2 @pSiO 2 )组成的容纳姜黄素和凝集素的新型纳米结构,并提供了抗菌协同作用。由纳米复合材料鉴定。所得球形 CeO 2 @pSiO 2 纳米结构可容纳姜黄素负载 (9 w/w%) 和凝集素(伴刀豆球蛋白 A)涂层 (15 w/w%) 。使用针对大肠杆菌革兰氏阴性菌株的最小抑制浓度测定来测试抗菌协同作用。此外,姜黄素负载和刀豆球蛋白 A 包被的 CeO 2 @pSiO 2 core@shell 结构诱导细菌细胞破碎的机制,即纳米抗生素(nano-AB)和其设计组件已被确定。我们的研究结果表明,纳米 AB 设计中 CeO 2 核心周围的介孔二氧化硅壳有助于姜黄素和刀豆球蛋白 A 的调节,并促进细菌细胞运动性的破坏以及细菌细胞内外的通透性膜。我们的研究结果强烈表明,具有 CeO 2 核的纳米粒子周围的介孔二氧化硅壳具有提供协同抗菌治疗并通过不同作用机制攻击细菌细胞的潜力。
更新日期:2023-06-29
down
wechat
bug