当前位置: X-MOL 学术Electrophoresis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical and experimental investigation of the deviation of microparticles inside the microchannel using the vortices caused by the ICEK phenomenon
Electrophoresis ( IF 2.9 ) Pub Date : 2023-12-19 , DOI: 10.1002/elps.202300151
Seyed Mohammad Ehsan Ghadamgahi 1 , Mohammad Mohsen Shahmardan 1 , Mohsen Nazari 1 , Hamed Mansouri 1 , Nicole N Hashemi 2
Affiliation  

One field of study in microfluidics is the control, trapping, and separation of microparticles suspended in fluid. Some of its applications are related to cell handling, virus detection, and so on. One of the new methods in this field is using ICEK phenomena and dielectrophoresis forces. In the present study, considering the ICEK phenomena, the microparticles inside the fluid are deviated in the desired ratio using a novel ICEK microchip. The deviation is such that after the microparticles reach the floating electrode, they are trapped in the ICEK flow vortex and deviated through a secondary channel that was placed crosswise and noncoplanar above the main channel. For simulation verification, an experimental test is done. The method used for making two noncoplanar channels and separating the particles in the desired ratio with a simple ICEK microchip is an innovation of the present study. Moreover, the adjustment of the percentage of separation of microparticles by adjusting the parameters of the applied voltage and fluid inlet velocity is one of the other innovations of the present experimental study. We observed that for input velocities (150–1200) (µm)/s, respectively, with applied voltages (10–33) V, 100% of the particles can be directed toward the secondary-channel.

中文翻译:

利用ICEK现象引起的涡流对微通道内微粒的偏差进行数值和实验研究

微流体学的研究领域之一是悬浮在流体中的微粒的控制、捕获和分离。它的一些应用与细胞处理、病毒检测等有关。该领域的新方法之一是利用ICEK现象和介电泳力。在本研究中,考虑到 ICEK 现象,使用新型 ICEK 微芯片使流体内的微粒以所需的比例偏离。这种偏差是这样的,即微粒到达浮动电极后,它们被困在ICEK涡流中,并偏离通过交叉放置且不共面位于主通道上方的辅助通道。为了进行仿真验证,进行了实验测试。使用简单的ICEK微芯片制作两个非共面通道并以所需比例分离颗粒的方法是本研究的一项创新。此外,通过调节施加电压和流体入口速度的参数来调节微粒分离的百分比是本实验研究的其他创新之一。我们观察到,对于输入速度 (150–1200) (μm)/s,施加电压 (10–33) V,100% 的粒子可以被引导至辅助通道。
更新日期:2023-12-21
down
wechat
bug