当前位置: X-MOL 学术J. Lond. Math. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large sums of high-order characters
Journal of the London Mathematical Society ( IF 1.2 ) Pub Date : 2023-12-19 , DOI: 10.1112/jlms.12841
Alexander P. Mangerel 1
Affiliation  

Let χ $\chi$ be a primitive character modulo a prime q $q$ , and let δ > 0 $\delta > 0$ . It has previously been observed that if χ $\chi$ has large order d d 0 ( δ ) $d \geqslant d_0(\delta)$ then χ ( n ) 1 $\chi (n) \ne 1$ for some n q δ $n \leqslant q^{\delta}$ , in analogy with Vinogradov's conjecture on quadratic non-residues. We give a new and simple proof of this fact. We show, furthermore, that if d $d$ is squarefree then for any d $d$ th root of unity α $\alpha$ the number of n x $n \leqslant x$ such that χ ( n ) = α $\chi (n) = \alpha$ is o d ( x ) $o_{d \rightarrow \infty}(x)$ whenever x > q δ $x > q^\delta$ . Consequently, when χ $\chi$ has sufficiently large order the sequence ( χ ( n ) ) n q δ $(\chi (n))_{n \leqslant q^\delta}$ cannot cluster near 1 $\hskip.001pt 1$ for any δ > 0 $\delta > 0$ . Our proof relies on a second moment estimate for short sums of the characters χ $\chi ^\ell$ , averaged over 1 d 1 $1 \leqslant \ell \leqslant d-1$ , that is non-trivial whenever d $d$ has no small prime factors. In particular, given any δ > 0 $\delta > 0$ we show that for all but o ( d ) $o(d)$ powers 1 d 1 $1 \leqslant \ell \leqslant d-1$ , the partial sums of χ $\chi ^\ell$ exhibit cancellation in intervals n q δ $n \leqslant q^\delta$ as long as d d 0 ( δ ) $d \geqslant d_0(\delta)$ is prime, going beyond Burgess' theorem. Our argument blends together results from pretentious number theory and additive combinatorics. Finally, we show that, uniformly over prime 3 d q 1 $3 \leqslant d \leqslant q-1$ , the Pólya–Vinogradov inequality may be improved for χ $\chi ^\ell$ on average over 1 d 1 $1 \leqslant \ell \leqslant d-1$ , extending work of Granville and Soundararajan.

中文翻译:

大量高阶字符

χ $\chi$ 是对素数取模的原始字符 q $q$ , 然后让 δ > 0 $\delta > 0$ 。之前已经观察到,如果 χ $\chi$ 有大订单 d d 0 δ $d \geqslant d_0(\delta)$ 然后 χ n 1 $\chi (n) \ne 1$ 对于一些 n q δ $n \leqslant q^{\delta}$ ,类似于维诺格拉多夫关于二次非留数的猜想。我们对这个事实给出了一个新的、简单的证明。此外,我们表明,如果 d $d$ 那么对于任何 d $d$ 统一根 α $\阿尔法$ 的数量 n X $n \leqslant x$ 这样 χ n = α $\chi (n) = \alpha$ d 无穷大 X $o_{d \rightarrow \infty}(x)$ 每当 X > q δ $x > q^\delta$ 。因此,当 χ $\chi$ 序列的阶数足够大 χ n n q δ $(\chi (n))_{n \leqslant q^\delta}$ 不能聚集在附近 1 $\hskip.001pt 1$ 对于任何 δ > 0 $\delta > 0$ 。我们的证明依赖于对字符的短和的二阶矩估计 χ $\chi^\ell$ , 平均超过 1 d - 1 $1 \leqslant \ell \leqslant d-1$ ,这在任何时候都是不平凡的 d $d$ 有不小的质因数。特别是,给定任何 δ > 0 $\delta > 0$ 我们向所有人展示了这一点,除了 d $o(d)$ 权力 1 d - 1 $1 \leqslant \ell \leqslant d-1$ ,部分总和 χ $\chi^\ell$ 展览间歇期取消 n q δ $n \leqslant q^\delta$ 只要 d d 0 δ $d \geqslant d_0(\delta)$ 是素数,超出了伯吉斯定理。我们的论点将自命不凡的数论和加性组合数学的结果融合在一起。最后,我们证明,均匀地超过素数 3 d q - 1 $3 \leqslant d \leqslant q-1$ ,Pólya-Vinogradov 不等式可能会得到改善 χ $\chi^\ell$ 平均超过 1 d - 1 $1 \leqslant \ell \leqslant d-1$ ,扩展了 Granville 和 Soundararajan 的工作。
更新日期:2023-12-21
down
wechat
bug