当前位置: X-MOL 学术Numer. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved rates for a space–time FOSLS of parabolic PDEs
Numerische Mathematik ( IF 2.1 ) Pub Date : 2023-12-27 , DOI: 10.1007/s00211-023-01387-3
Gregor Gantner , Rob Stevenson

We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components \((u_1,\textbf{u}_2)=(u,-\nabla _\textbf{x} u)\). The corresponding operator is boundedly invertible between a Hilbert space U and a Cartesian product of \(L_2\)-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides \(L_2\)-norms of \(\nabla _\textbf{x} u_1\) and \(\textbf{u}_2\), the (graph) norm of U contains the \(L_2\)-norm of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\). When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of \(\textbf{u}_2\). In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions u. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\), i.e., of the forcing term \(f=(\partial _t-\Delta _x)u\). Numerical results show significantly improved convergence rates.



中文翻译:

提高抛物线偏微分方程时空 FOSLS 的速率

我们考虑由 Bochev 和 Gunzburger 引入的热方程的一阶系统时空公式(见:Bochev 和 Gunzburger (eds) 应用数学科学,第 166 卷,Springer,纽约,2009 年),并由 Führer 和 Karkulik 进行分析(Comput Math Appl 92:27–36, 2021) 和 Gantner 和 Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021),解决方案组件 \ ((u_1,\textbf{u}_2)=( u,-\nabla _\textbf{x} u)\)。相应的算子在希尔伯特空间U和\(L_2\)型空间的笛卡尔积之间有界可逆,这有利于简单的一阶系统最小二乘 (FOSLS) 离散化。除了\ (\nabla _\textbf{x} u_1\)\(\textbf{u}_2\)的 \(L_2\) -范数之外, U的(图)范数还包含\(L_2\) -范数的\(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\)。当将标准有限元应用于时空圆柱的单纯分区时,后一范数的近似误差估计需要\(\textbf{u}_2\)的高阶平滑度。在均匀划分和自适应细化划分的实验中,这表现为非光滑解u的收敛速度极低,令人失望。在本文中,我们用棱柱形分区构造有限元空间。它们带有一个准插值,满足近通勤图,从某种意义上说,除了一些无害的项之外,上述误差完全取决于\(\partial _t u_1 +{{\,\textrm{div}\ ,}}_\textbf{x} \textbf{u}_2\),即强迫项\(f=(\partial _t-\Delta _x)u\)。数值结果显示收敛速度显着提高。

更新日期:2023-12-28
down
wechat
bug