当前位置: X-MOL 学术Georgian Math. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two presentations of a weak type inequality for geometric maximal operators
Georgian Mathematical Journal ( IF 0.7 ) Pub Date : 2024-01-01 , DOI: 10.1515/gmj-2023-2113
Paul Hagelstein 1 , Giorgi Oniani 2 , Alex Stokolos 3
Affiliation  

Let Φ : [ 0 , ) [ 0 , ) {\Phi:[0,\infty)\rightarrow[0,\infty)} be a Young’s function satisfying the Δ 2 {\Delta_{2}} -condition and let M {M_{\mathcal{B}}} be the geometric maximal operator associated to a homothecy invariant basis {\mathcal{B}} acting on measurable functions on n {\mathbb{R}^{n}} . Let Q be the unit cube in n {\mathbb{R}^{n}} and let L Φ ( Q ) {L^{\Phi}(Q)} be the Orlicz space associated to Φ with the norm given by f L Φ ( Q ) := inf { c > 0 : Q Φ ( | f | c ) 1 } . \|f\|_{L^{\Phi}(Q)}:=\inf\Biggl{\{}c>0:\int_{Q}\Phi\bigg{(}\frac{|f|}{c}\bigg{% )}\leq 1\Bigg{\}}. We show that M {M_{\mathcal{B}}} satisfies the weak type estimate | { x n : M f ( x ) > α } | C 1 n Φ ( | f | α ) |\{x\in\mathbb{R}^{n}:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{1}% \int_{\mathbb{R}^{n}}\Phi\bigg{(}\frac{|f|}{\alpha}\bigg{)} for all measurable functions f on n {\mathbb{R}^{n}} and α > 0 {\alpha>0} if and only if M {M_{\mathcal{B}}} satisfies the weak type estimate | { x Q : M f ( x ) > α } | C 2 f L Φ ( Q ) α |\{x\in Q:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{2}\frac{\|f\|_{% L^{\Phi}(Q)}}{\alpha} for all measurable functions f supported on Q and α > 0 {\alpha>0} . As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and {\mathcal{B}} is a homothecy invariant basis differentiating integrals of all measurable functions f on n {\mathbb{R}^{n}} such that n Φ ( | f | ) < {\int_{\mathbb{R}^{n}}\Phi(|f|)<\infty} , then the associated maximal operator M {M_{\mathcal{B}}} satisfies both of the above weak type estimates.

中文翻译:

几何极大算子弱型不等式的两种表示

Φ : [ 0 , 无穷大 [ 0 , 无穷大 {\Phi:[0,\infty)\rightarrow[0,\infty)} 是满足以下条件的杨氏函数 Δ 2 {\Delta_{2}} -条件并让 中号 {M_{\mathcal{B}}} 是与同伦不变基相关的几何极大算子 {\mathcal{B}} 作用于可测量的函数 n {\mathbb{R}^{n}} 。让是单位立方体 n {\mathbb{R}^{n}} 然后让 L Φ {L^{\Phi}(Q)} 是与 Φ 相关的 Orlicz 空间,其范数为 F L Φ := 信息 { C > 0 : Φ | F | C 1 } \|f\|_{L^{\Phi}(Q)}:=\inf\Biggl{\{}c>0:\int_{Q}\Phi\bigg{(}\frac{|f|} {c}\bigg{% )}\leq 1\Bigg{\}}。 我们表明 中号 {M_{\mathcal{B}}} 满足弱类型估计 | { X ε n : 中号 F X > α } | C 1 n Φ | F | α |\{x\in\mathbb{R}^{n}:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{1}% \int_{\mathbb{ R}^{n}}\Phi\bigg{(}\frac{|f|}{\alpha}\bigg{)} 对于所有可测量的功能F n {\mathbb{R}^{n}} α > 0 {\alpha>0} 当且仅当 中号 {M_{\mathcal{B}}} 满足弱类型估计 | { X ε : 中号 F X > α } | C 2 F L Φ α |\{x\in Q:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{2}\frac{\|f\|_{% L^{\ Φ}(Q)}}{\alpha} 对于所有可测量的功能F支持于 α > 0 {\alpha>0} 。作为这种等价性的结果,我们证明如果 Φ 满足上述条件并且 {\mathcal{B}} 是对所有可测函数的积分进行微分的同伦不变基F n {\mathbb{R}^{n}} 这样 n Φ | F | < 无穷大 {\int_{\mathbb{R}^{n}}\Phi(|f|)<\infty} ,然后关联的最大运算符 中号 {M_{\mathcal{B}}} 满足上述两个弱类型估计。
更新日期:2024-01-01
down
wechat
bug