当前位置: X-MOL 学术Int. J. Extrem. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Slippery hydrogel with desiccation-tolerant ‘skin’ for high-precision additive manufacturing
International Journal of Extreme Manufacturing ( IF 14.7 ) Pub Date : 2024-01-04 , DOI: 10.1088/2631-7990/ad1730
Desheng Liu , Pan Jiang , Yue Hu , Yaozhong Lu , Yixian Wang , Jiayu Wu , Danli Hu , Tao Wu , Xiaolong Wang

Hydrogels inevitably undergo dehydration, structural collapse, and shrinkage deformation due to the uninterrupted evaporation in the atmosphere, thereby losing their flexibility, slipperiness, and manufacturing precision. Here, we propose a novel bioinspired strategy to construct a spontaneously formed ‘skin’ on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network, which can generate robust hydrogen bonding interactions to restrain water evaporation. The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance, mechanical properties, and lubricating performance of slippery hydrogels in a wide range. Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution, shape fidelity, and sophisticated architectures, instead of structural collapse and shrinkage deformation caused by dehydration. And thus, this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process. As a proof-of-concept demonstration, a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention. Additionally, the proposed protocol is universally applicable to diverse types of hydrogel systems. This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices, expanding their high-precision processing and broad applications in the atmosphere.

中文翻译:

具有耐干燥“皮肤”的光滑水凝胶,用于高精度增材制造

水凝胶由于在大气中不间断的蒸发,不可避免地会发生脱水、结构塌陷和收缩变形,从而失去其柔韧性、滑性和制造精度。在这里,我们提出了一种新颖的仿生策略,通过将生物应激代谢物海藻糖纳入水凝胶网络,在光滑的水凝胶上构建自发形成的“皮肤”,这可以产生强大的氢键相互作用以抑制水蒸发。水凝胶基质中海藻糖的含量还可以在较大范围内调节滑性水凝胶的耐干燥性、机械性能和润滑性能。将大桶光聚合三维打印与海藻糖修饰的滑爽水凝胶相结合,能够获得具有高分辨率、形状保真度和复杂结构的结构水凝胶,而不是因脱水而导致结构塌陷和收缩变形。因此,这种提出的功能性水凝胶适合在长期过程中制造具有复杂结构的大规模水凝胶。作为概念验证演示,可以轻松制造高精度且复杂的光滑水凝胶血管模型来模拟导丝干预。此外,所提出的协议普遍适用于不同类型的水凝胶系统。这一策略开辟了一种多功能方法来制造用于功能结构和设备的耐干滑水凝胶,扩大了其高精度加工和在大气中的广泛应用。
更新日期:2024-01-04
down
wechat
bug