当前位置: X-MOL 学术Int. J. Opt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-Dependent Electromagnetic Surface Wave Supported by Graphene-Loaded Indium Antimonide Planar Structure
International Journal of Optics ( IF 1.7 ) Pub Date : 2024-1-5 , DOI: 10.1155/2024/9607121
M. Z. Yaqoob 1 , Ahtisham Ali 1 , Majeed A. S. Alkanhal 2 , A. Ghaffar 3 , Y. Khan 2 , M. Umair 4
Affiliation  

In this study, the propagation characteristics of EM surface waves supported by the graphene-coated indium antimonide (InSb) planar waveguide have been investigated theoretically and numerically. The modeling of graphene has been performed by use of Kubo formalism whereas the relative permittivity of indium antimonide has been calculated using Drude’s model. The results for transverse electric (TE) and transverse magnetic (TM) polarized surface waves have been computed analytically and numerically. The major challenge is to model the atomically thick graphene sheet over the InSb grounded slab. To get the temperature-dependent characteristic equation for the electromagnetic surface waves, the surface current boundary conditions’ approach has been employed. The numerical results have been computed for both the TE and TM polarization states and reported that the TE does not support the propagation of surface waves. The dispersion relation, effective mode index, phase speed, propagation length, and field profile have been computed in Mathematica under TM polarization. The graphene and indium antimonide have been found active for low and high Terahertz regions, respectively. As temperature increases, the plasma frequency of the InSb increases due to this reason with the increase of temperature and the resonance frequency, leading to a shift in the dispersion curve. Moreover, with the increase of temperature, the effective wave number of transverse magnetic polarized surface waves also increases. Resultantly, the confinement of such surface waves supported by graphene-loaded InSb increases. It is shown that with the variation of temperature of indium antimonide, the surface waves propagating across the interface can be tuned in the Terahertz region and can be exploited for thermo-optical sensing, near-field communications waveguides, and graphene-based temperature sensor designing.

中文翻译:

石墨烯负载锑化铟平面结构支持的温度依赖性电磁表面波

在这项研究中,对石墨烯涂层锑化铟(InSb)平面波导支持的电磁表面波的传播特性进行了理论和数值研究。石墨烯的建模是使用 Kubo 形式主义进行的,而锑化铟的相对介电常数是使用德鲁德模型计算的。横向电(TE)和横向磁(TM)极化表面波的结果已经通过分析和数值计算得到。主要挑战是对 InSb 接地平板上的原子厚石墨烯片进行建模。为了得到电磁表面波与温度相关的特征方程,采用了表面电流边界条件的方法。计算了 TE 和 TM 偏振态的数值结果,并报告说 TE 不支持表面波的传播。TM 偏振下的色散关系、有效模式指数、相速度、传播长度和场分布已在 Mathematica 中计算。研究发现石墨烯和锑化铟分别对低太赫兹区域和高太赫兹区域具有活性。随着温度升高,InSb的等离子体频率因此随着温度和谐振频率的升高而升高,导致色散曲线发生偏移。而且,随着温度的升高,横向磁极化表面波的有效波数也随之增加。结果,由石墨烯负载的 InSb 支持的这种表面波的限制增加。结果表明,随着锑化铟温度的变化,穿过界面传播的表面波可以在太赫兹区域进行调谐,可用于热光传感、近场通信波导和基于石墨烯的温度传感器设计。
更新日期:2024-01-05
down
wechat
bug