当前位置: X-MOL 学术Bioscience › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The biological basis for using optical signals to track evergreen needleleaf photosynthesis
BioScience ( IF 10.1 ) Pub Date : 2024-01-05 , DOI: 10.1093/biosci/biad116
Zoe Amie Pierrat 1, 2 , Troy S Magney 3 , Rui Cheng 4 , Andrew J Maguire 2, 5 , Christopher Y S Wong 3 , Magali F Nehemy 6 , Mukund Rao 3, 7, 8 , Sara E Nelson 9 , Anneka F Williams 9 , Jeremy A Hoyne Grosvenor 9 , Kenneth R Smith 10 , Jaret S Reblin 11 , Jochen Stutz 1 , Andrew D Richardson 12 , Barry A Logan 9 , David R Bowling 10
Affiliation  

Evergreen needleleaf forests (ENFs) play a sizable role in the global carbon cycle, but the biological and physical controls on ENF carbon cycle feedback loops are poorly understood and difficult to measure. To address this challenge, a growing appreciation for the stress physiology of photosynthesis has inspired emerging techniques designed to detect ENF photosynthetic activity with optical signals. This Overview summarizes how fundamental plant biological and biophysical processes control the fate of photons from leaf to globe, ultimately enabling remote estimates of ENF photosynthesis. We demonstrate this using data across four ENF sites spanning a broad range of environmental conditions and link leaf- and stand-scale observations of photosynthesis (i.e., needle biochemistry and flux towers) with tower- and satellite-based remote sensing. The multidisciplinary nature of this work can serve as a model for the coordination and integration of observations made at multiple scales.

中文翻译:

利用光信号追踪常绿针叶光合作用的生物学基础

常绿针叶林 (ENF) 在全球碳循环中发挥着相当大的作用,但对 ENF 碳循环反馈回路的生物和物理控制知之甚少且难以测量。为了应对这一挑战,人们对光合作用应激生理学的日益认识激发了旨在利用光信号检测 ENF 光合作用活动的新兴技术。本概述总结了基本的植物生物学和生物物理过程如何控制光子从叶子到地球的命运,最终实现 ENF 光合作用的远程估计。我们使用跨越广泛环境条件的四个 ENF 站点的数据来证明这一点,并将叶和林分尺度的光合作用观测(即针状生物化学和通量塔)与基于塔和卫星的遥感联系起来。这项工作的多学科性质可以作为协调和整合多尺度观测的模型。
更新日期:2024-01-05
down
wechat
bug