当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2024-01-11 , DOI: 10.1038/s41565-023-01570-5
Damià Viana , Steven T. Walston , Eduard Masvidal-Codina , Xavi Illa , Bruno Rodríguez-Meana , Jaume del Valle , Andrew Hayward , Abbie Dodd , Thomas Loret , Elisabet Prats-Alfonso , Natàlia de la Oliva , Marie Palma , Elena del Corro , María del Pilar Bernicola , Elisa Rodríguez-Lucas , Thomas Gener , Jose Manuel de la Cruz , Miguel Torres-Miranda , Fikret Taygun Duvan , Nicola Ria , Justin Sperling , Sara Martí-Sánchez , Maria Chiara Spadaro , Clément Hébert , Sinead Savage , Jordi Arbiol , Anton Guimerà-Brunet , M. Victoria Puig , Blaise Yvert , Xavier Navarro , Kostas Kostarelos , Jose A. Garrido

One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (25 kΩ) and high charge injection (3–5 mC cm2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.



中文翻译:

用于体内高分辨率神经记录和刺激的纳米多孔石墨烯薄膜微电极

决定神经接口性能的关键因素之一是用于与神经组织建立电通信的电极材料,需要满足严格的电、电化学、机械、生物和微加工兼容性要求。这项工作提出了一种基于纳米多孔石墨烯的薄膜技术及其形成柔性神经接口的工程。所开发的技术允许制造小型微电极(25 µm 直径),同时实现低阻抗( 25 kΩ)和高电荷注入(3–5 mC cm - 2)。在啮齿类动物中评估的体内脑记录性能显示出高保真记录(局部场电位的信噪比>10 dB),而用束内植入物评估的刺激性能则显示出低电流阈值(<100 µA)和高选择性( >0.8)用于激活大鼠坐骨神经支配胫骨前肌和足底骨间肌内的轴突子集。此外,通过慢性外皮层(12周)和神经内(8周)植入验证了装置的组织生物相容性。这项工作描述了一种基于石墨烯的薄膜微电极技术,并展示了其在高精度和高分辨率神经接口方面的潜力。

更新日期:2024-01-11
down
wechat
bug