当前位置: X-MOL 学术Solid State Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum information processing in electrically defined Silicon triple quantum dot systems
Solid-State Electronics ( IF 1.7 ) Pub Date : 2024-01-15 , DOI: 10.1016/j.sse.2024.108863
Ji-Hoon Kang , Hoon Ryu

Quantum bits (qubits) operations in electrically defined Silicon (Si) triple quantum dots (TQDs) are computationally investigated to elevate the potential of TQD structure as a platform for quantum information processing. Employing a realistic Si/Si-germanium heterostructure as a target model, device simulations are conducted to secure an initialized qubit state. Basic programmability is verified through implementation of individual qubit operations and 2-qubit entangling operations between neighboring QDs. Constructing a gate sequence composed of 1-qubit and 2-qubit blocks, then, we not only generate three-qubit Greenberger–Horne–Zeilinger state, but also quantify the degradation of state fidelity under the inevitable inaccuracy which are incorporated in the dominant factors of spin-qubit Hamiltonian. Presenting engineering details that are hard to be carried by simulations based on the first principle theory, this work can be served as a practical guideline for designs of scalable quantum processors with electron spin-qubits in Si QD platforms.



中文翻译:

电定义硅三量子点系统中的量子信息处理

通过计算研究电学定义的(Si) 三重量子点 (TQD) 中的量子位 (qubit) 操作,以提升 TQD 结构作为量子信息处理平台的潜力。采用现实的 Si/以硅锗异质结构作为目标模型,进行器件模拟以确保初始化的量子位状态。通过实施单个量子位操作和相邻 QD 之间的 2 量子位纠缠操作来验证基本可编程性。构造一个由 1 量子位和 2 量子位块组成的门序列,然后,我们不仅生成三量子位 Greenberger-Horne-Zeilinger 状态,而且还量化了在不可避免的不准确情况下状态保真度的下降,这些不准确被纳入主导因素自旋量子位哈密顿量。这项工作提出了基于第一原理理论的模拟难以实现的工程细节,可以作为 Si QD 平台中具有电子自旋量子位的可扩展量子处理器设计的实用指南。

更新日期:2024-01-15
down
wechat
bug