当前位置: X-MOL 学术Braz. J. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Absorber Enrichment Study and Implications on the Performance of Lead-Free CsSnI3 Perovskite Solar Cells (PSCs) Using One-Dimensional Solar Cell Capacitance Simulator (1D-SCAPS)
Brazilian Journal of Physics ( IF 1.6 ) Pub Date : 2024-01-17 , DOI: 10.1007/s13538-023-01406-6
T. O. Ahmed , T. T. Ibrahim , E. O. Oladimeji , J. D. Koffa

Extensive research efforts have been made over the last few years to proffer solution to the high recombination rate and stability issues associated with Sn-based perovskite solar cells. In line with this, we modeled cesium tin iodide (CsSnI3)–based perovskite solar cell (PSC) with titanium (IV) oxide (TiO2) and copper thiocyanate (CuSCN) as the electron and hole transport materials respectively by employing one-dimensional solar cell capacitance simulator (1D-SCAPS). For the CsSnI3-based PSC, n-i-p planar configuration was employed and previously published relevant data were used for the simulation. The results obtained for the initially modeled PSC compared well with similar devices in the literature. Based on the established relationship between charge carrier lifetime and power conversion efficiency (PCE) of a solar cell, we varied defect density in the cesium tin iodide (CsSnI3) from 1013 to 1017 cm−3 and studied its influence on the performance parameters of the modeled CsSnI3-based PSC. We find that the diffusion length and lifetime of charge carriers are significantly increased with decreasing defect density of the CsSnI3 absorber. In this study, we report that it is possible to significantly reduce the dominated Shockley–Read–Hall (SRH) high recombination rate occurring in CsSnI3 perovskite layer even at a low defect density of 1013 cm−3 by using a combination of SnCl2 and Br as additive and dopant respectively for CsSnI3 enrichment. This strategy ensured a reduced concentration of Sn4+ vacancy (VSn) in the CsSnI3 absorber and an improved carrier lifetime beyond 0.05 ns as obtained for the initially modeled CsSnI3-based PSC by a magnitude of the order of 103 while the diffusion length was improved from 1.1 µm by a magnitude of the order of 102 for the enriched CsSnI3-based PSC. For the optimized CsSnI3-based PSC, we recorded an open-circuit voltage (VOC) of magnitude 1.289 V, short-circuit current density (JSC) value 32.60 mA∙cm−2, fill factor (FF) 83.56%, and PCE 35.12%.



中文翻译:

使用一维太阳能电池电容模拟器 (1D-SCAPS) 进行吸收剂富集研究及其对无铅 CsSnI3 钙钛矿太阳能电池 (PSC) 性能的影响

在过去的几年里,人们进行了大量的研究工作,以解决与锡基钙钛矿太阳能电池相关的高复合率和稳定性问题。据此,我们分别采用氧化钛(IV)(TiO 2)和硫氰酸铜(CuSCN)作为电子和空穴传输材料,模拟了碘化铯锡(CsSnI 3 )基钙钛矿太阳能电池(PSC)。三维太阳能电池电容模拟器(1D-SCAPS)。对于基于CsSnI 3的PSC,采用了nip平面配置,并使用先前发布的相关数据进行模拟。最初建模的 PSC 获得的结果与文献中的类似设备相比较。基于太阳能电池载流子寿命和功率转换效率(PCE)之间已建立的关系,我们将碘化铯锡(CsSnI 3)中的缺陷密度从10 13 cm -3 改变到10 17 cm -3,并研究了其对性能的影响。模型化 CsSnI 3基 PSC 的参数。我们发现,随着 CsSnI 3吸收体缺陷密度的降低,载流子的扩散长度和寿命显着增加。在这项研究中,我们报告说,即使在10 13 cm -3的低缺陷密度下,通过使用SnCl的组合,也可以显着降低CsSnI 3钙钛矿层中发生的主导Shockley-Read-Hall (SRH)高复合率。 2和Br -分别作为CsSnI 3富集的添加剂和掺杂剂。该策略确保了CsSnI 3吸收体中 Sn 4+空位 ( V Sn )浓度的降低,以及载流子寿命的改善,超过 0.05 ns,正如最初建模的基于 CsSnI 3的 PSC 所获得的那样,其幅度为 10 3数量级,而对于富集的CsSnI 3基PSC,扩散长度从1.1 µm 提高了10 2数量级。对于优化的CsSnI 3基PSC 我们记录了开路电压(VOC)为1.289 V,短路电流密度(J SC)值为32.60 mA∙cm -2,填充因子(FF)为83.56%,和个人消费支出35.12%。

更新日期:2024-01-17
down
wechat
bug