当前位置: X-MOL 学术Fire Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction: Fire severity influences large wood and stream ecosystem responses in western Oregon watersheds
Fire Ecology ( IF 5.1 ) Pub Date : 2024-01-18 , DOI: 10.1186/s42408-023-00240-0
Ashley A. Coble , Brooke E. Penaluna , Laura J. Six , Jake Verschuyl

Correction: Fire Ecol 19, 34 (2023)

https://doi.org/10.1186/s42408-023–00192-5

When analysing subsequent years of fish and amphibian data, the authors identified an error in some of the reach area calculations that affected vertebrate densities for some sites (density and biomass density for fish and amphibians). Specifically, the formula for reach area in some cells (5 sites) referenced wetted width from an adjacent site instead of the correct site. Because this error did not occur across all cells (sites) and because abundance data were not affected this calculation error was not readily apparent. This error affected densities for fish and amphibians at some sites, including 2 of the most severely burned sites, and therefore affects the individual fish and amphibian responses reported in Fig. 7 a, b. For consistency, Fig. 5 (PCA) has also been updated to reflect these changes.

Fig. 5
figure 1

Principal components analysis (PCA) and relationships of axes with fire severity and pre-fire stand age. a PCA with scores and loadings of physical, chemical, biological, and watershed characteristics. b Principal component 1 (PC1) varied as a function of fire severity as RAVG mean. c Principal component 2 (PC2) varied as a function of pre-fire stand age

Full size image

This correction affects only the fish and amphibian density and biomass density results (Fig. 5, Fig. 7 panel a and b), with minimal edits to the text. However, this small adjustment does not affect the overall conclusions or interpretation of the article, which focuses on the response of in-stream large wood and riparian coarse wood to wildfire.

Fig. 7
figure 2

Biological responses that varied as a function of fire severity (RAVG). Biological responses included: a fish density (no m−2); b fish biomass density (g m−2); c macroinvertebrate density (no m−2); d macroinvertebrate Shannon–Weaver diversity (Shannon diversity); e scrapers (%); f intolerant taxa (%); and (g) sensitive taxa

Full size image

The original article (Coble et al. 1) has been corrected.

The corrected figures can be found below with a table of corrections that have been implemented in the original article.

Table of corrections

Section

Originally published text

Corrected text

Abstract

Results section

At higher fire severities, riparian tree mortality, salvage logging, light, and dissolved organic matter (DOM) concentrations were higher, whereas canopy cover, LW diameter, macroinvertebrate diversity, and fish density were lower

At higher fire severities, riparian tree mortality, salvage logging, light, and dissolved organic matter (DOM) concentrations, and fish densities were higher, whereas canopy cover, LW diameter, macroinvertebrate diversity, and amphibian density were lower

Abstract

Conclusions section

Severe fires burn more overstory riparian vegetation, leading to increased light,

DOM concentrations, and macroinvertebrate densities, along with reduced canopy cover, LW diameter, macroinvertebrate diversity, and fish densities

Severe fires burn more overstory riparian vegetation, leading to increased light, DOM concentrations, and macroinvertebrate and fish densities, along with reduced canopy cover, LW diameter, macroinvertebrate diversity, and amphibian densities

Principal components analysis section

First paragraph

Principal component 1 (PC1) explained 26.1% of the variation and was positively related to canopy cover, LW diameter geometric mean, and macroinvertebrate sensitive and intolerant taxa, and negatively related to overstory tree mortality, PAR, watershed salvage logging, DOC, and stream temperature (Fig. 5a). Principal component 2 (PC2) explained 15.7% of the variation and was positively related to SUVA254, MAT, PO43−, and TP, but negatively related to MAP and elevation

Principal component 1 (PC1) explained 25.6% of the variation and was positively related to canopy cover, LW diameter geometric mean, and macroinvertebrate sensitive and intolerant taxa, and negatively related to overstory tree mortality, PAR, watershed salvage logging, DOC, and stream temperature (Fig. 5a). Principal component 2 (PC2) explained 15.9% of the variation and was positively related to SUVA254, MAT, PO43−, and TP, but negatively related to MAP and elevation

Principal components analysis section

Second paragraph

Fire severity was a significant predictor of PC1 revealing more severely burned watersheds had greater tree mortality, salvage logging, light availability, DOC, DON, NH4+, and stream temperature, and had lower canopy cover, fish density, sensitive and intolerant macroinvertebrate taxa, percent scrapers, and smaller diameter wood in streams and riparian areas (Fig. 5b; Additional File 2)

Fire severity was a significant predictor of PC1 revealing more severely burned watersheds had greater tree mortality, salvage logging, light availability, DOC, DON, NH4+, fish density, and stream temperature, and had lower canopy cover, sensitive and intolerant macroinvertebrate taxa, percent scrapers, and smaller-diameter wood in streams and riparian areas (Fig. 5b; Additional File 2)

Covariate response to fire severity or pre‑fire stand age section

Fifth paragraph

We hypothesized that stream biota would respond negatively to streams exposed to greater fire severity, and our results are consistent with this hypothesis for some top predators. Of top predators (fish or amphibians), we found that only fish density and fish biomass density varied with fire severity and pre-fire stand age, whereas amphibian density and amphibian biomass density did not vary with any predictors (Fig. 5). We observed a significant interaction of fish density to fire severity and pre-fire stand age, and to their individual main effects. Fish biomass density varied with fire severity, but not pre-fire stand age or their interaction. Fish density and fish biomass density were lower in more severely burned watersheds, but fish density was greater in watersheds draining younger pre-fire stand ages

We hypothesized that stream biota would respond negatively to streams exposed to greater fire severity, and our results are consistent with this hypothesis for amphibians, but not fish. Amphibian density varied with fire severity and pre-fire stand age, whereas fish density varied with fire severity. Fish biomass density and amphibian biomass density did not vary with any predictors (Fig. 5). We did not observe a significant interaction of amphibian density to fire severity and pre-fire stand age, but their individual main effects were significant with greater amphibian densities occurring in less severely burned watersheds and in older pre-fire stand ages. Fish density was greater in more severely burned watersheds

Fire severity and pre‑fire stand age influence aquatic ecosystems section

First paragraph

In watersheds that burned at higher severity, overstory mortality, light availability, DOM concentrations, salvage logging, and stream temperature increased whereas canopy cover, LW diameter, sensitive and intolerant macroinvertebrate taxa, functional feeding group of scrapers, fish density, and fish biomass density decreased

In watersheds that burned at higher severity, overstory mortality, light availability, DOM concentrations, salvage logging, stream temperature, and fish density increased whereas canopy cover, LW diameter, sensitive and intolerant macroinvertebrate taxa, functional feeding group of scrapers, and amphibian density decreased

Fire severity and pre‑fire stand age influence aquatic ecosystems section

Sixth paragraph

We found that fish density and biomass density decreased in more severely burned watersheds across our study area, which includes 24 sites and multiple fires

We found that fish density increased and amphibian density decreased in more severely burned watersheds across our study area, which includes 24 sites and multiple fires

Fire severity and pre‑fire stand age influence aquatic ecosystems section

Sixth paragraph

These changes likely collectively contributed to declines in fish density and fish biomass density. Despite immediate declines observed in our study, these native populations are expected to recover quickly (Rieman and Clayton 1997; Dunham et al. 2003; Rieman et al. 2012; Gomez Isaza et al. 2022), and ongoing monitoring will aid in our understanding of recovery across a range of fire severity across sites from different fires

These changes likely collectively contributed to greater fish density and lower amphibian density. Despite mixed predator responses observed in our study, these native populations are expected to recover quickly (Rieman and Clayton 1997; Dunham et al. 2003; Rieman et al. 2012; Gomez Isaza et al. 2022), and ongoing monitoring will aid in our understanding of recovery across a range of fire severity across sites from different fires

Conclusions

Within the first 8 to 11 months after western Cascades mega-fires, we found more severe fires burned more overstory riparian vegetation, leading to increased light, DOM concentrations, and macroinvertebrate densities, along with reduced canopy cover, LW diameter, macroinvertebrate diversity, and fish densities

Within the first 8 to 11 months after western Cascades mega-fires, we found more severe fires burned more overstory riparian vegetation, leading to increased light, DOM concentrations, and macroinvertebrate and fish densities, along with reduced canopy cover, LW diameter, macroinvertebrate diversity, and amphibian densities

Additional file 5

Biological variables as a function of pre-fire stand age (y). Variables included: a) Ash-free dry mass (g m−2), b) Collector-filterer (%), c) Shredders (%), d) EPT (%), e) Amphibian density (no. m−2), and f)

Amphibian biomass density (g m−2)

Biological variables as a function of pre-fire stand age (y) and fire severity (RAVG). Variables included: a) Ash-free dry mass (g m−2), b) Collector-filterer (%), c) Shredders (%), d) EPT (%), e) Fish biomass density (g m−2), and f) Amphibian biomass density (g m−2)

  1. Coble, A.A., Penaluna, B.E., Six, L.J. et al. Fire severity influences large wood and stream ecosystem responses in western Oregon watersheds. Fire Ecol 19, 34 (2023). https://doi.org/10.1186/s42408-023-00192-5.

Download references

Authors and Affiliations

  1. NCASI, 2438 NW Professional Drive, Corvallis, OR, 97330, USA

    Ashley A. Coble

  2. U.S.D.A. Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA

    Brooke E. Penaluna

  3. Weyerhaeuser Company, 505 N Pearl St, Centralia, WA, 98531, USA

    Laura J. Six

  4. NCASI, 1117 3Rd Street, Anacortes, WA, 98221, USA

    Jake Verschuyl

Authors
  1. Ashley A. CobleView author publications

    You can also search for this author in PubMed Google Scholar

  2. Brooke E. PenalunaView author publications

    You can also search for this author in PubMed Google Scholar

  3. Laura J. SixView author publications

    You can also search for this author in PubMed Google Scholar

  4. Jake VerschuylView author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ashley A. Coble.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coble, A.A., Penaluna, B.E., Six, L.J. et al. Correction: Fire severity influences large wood and stream ecosystem responses in western Oregon watersheds. fire ecol 20, 5 (2024). https://doi.org/10.1186/s42408-023-00240-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s42408-023-00240-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:

更正:火灾严重程度影响俄勒冈州西部流域的大型木材和溪流生态系统反应

更正:消防生态 19, 34 (2023)

https://doi.org/10.1186/s42408-023–00192-5

在分析随后几年的鱼类和两栖动物数据时,作者发现一些影响区域计算中的错误影响了某些地点的脊椎动物密度(鱼类和两栖动物的密度和生物量密度)。具体来说,某些单元格(5 个地点)中的到达面积公式参考了相邻地点而不是正确地点的润湿宽度。由于该错误并未在所有单元格(位点)中发生,并且由于丰度数据未受到影响,因此该计算错误并不明显。这一误差影响了某些地点的鱼类和两栖动物的密度,包括 2 个烧毁最严重的地点,因此影响了图 7 a、b 中报告的个体鱼类和两栖动物的反应。为了保持一致性,图 5 (PCA) 也已更新以反映这些变化。

图5
图1

主成分分析 (PCA) 以及轴与火灾严重程度和火灾前耐龄的关系。具有物理、化学、生物和流域特征的分数和负载的 PCA b主成分 1 (PC1) 作为 RAVG 平均值的火灾严重程度的函数而变化。c主成分 2 (PC2) 随着预燃时间的变化而变化

全尺寸图像

此校正仅影响鱼类和两栖动物密度和生物量密度结果(图 5、图 7 面板 a 和 b),对文本进行最少的编辑。不过,这个小调整并不影响文章的整体结论或解释,文章的重点是河内大木和河岸粗木对野火的响应。

图7
图2

生物反应随火灾严重程度而变化 (RAVG)。生物反应包括:密度(no m -2);b 鱼类生物量密度(gm -2);c大型无脊椎动物密度(no m -2);d大型无脊椎动物香农-韦弗多样性(Shannon Difference);e刮刀(%);f不耐受类群(%);( g ) 敏感类群

全尺寸图像

原始文章(Coble 等人 1)已更正。

更正后的数字可以在下面找到,其中包含原始文章中已实施的更正表。

更正表

部分

最初发表的文字

更正文本

抽象的

结果部分

火灾严重程度较高时,河岸树木死亡率、抢救性伐木、光和溶解有机物 (DOM) 浓度较高,而树冠覆盖度、LW 直径、大型无脊椎动物多样性和鱼类密度较低

火灾严重程度较高时,河岸树木死亡率、抢救性伐木、光和溶解有机物 (DOM) 浓度以及鱼类密度较高,而树冠覆盖度、LW 直径、大型无脊椎动物多样性和两栖动物密度较低

抽象的

结论部分

严重的火灾烧毁了更多的河岸植被,导致光照增加,

DOM 浓度和大型无脊椎动物密度,以及树冠覆盖面积、LW 直径、大型无脊椎动物多样性和鱼类密度的减少

严重的火灾会烧毁更多的上层河岸植被,导致光照、DOM浓度、大型无脊椎动物和鱼类密度增加,同时树冠覆盖、LW直径、大型无脊椎动物多样性和两栖动物密度减少

主成分分析部分

第一段

主成分 1 (PC1) 解释了 26.1% 的变异,与树冠覆盖度、LW 直径几何平均值和大型无脊椎动物敏感和不耐受类群呈正相关,与林木死亡率、PAR、流域抢救伐木、DOC 和溪流呈负相关温度(图5a)。主成分 2 (PC2) 解释了 15.7% 的变异,与 SUVA 254、MAT、PO 4 3−和 TP 呈正相关,但与 MAP 和海拔呈负相关

主成分 1 (PC1) 解释了25.6%的变异,与树冠覆盖度、LW 直径几何平均值和大型无脊椎动物敏感和不耐受类群呈正相关,与林木死亡率、PAR、流域抢救伐木、DOC 和溪流呈负相关温度(图5a)。主成分 2 (PC2) 解释了15.9%的变异,与 SUVA 254、MAT、PO 4 3−和 TP 呈正相关,但与 MAP 和海拔呈负相关

主成分分析部分

第二段

火灾严重程度是 PC1 的重要预测因素,表明烧毁更严重的流域具有更高的树木死亡率、抢救性伐木、光利用率、DOC、DON、NH 4 +和溪流温度,并且具有较低的树冠覆盖度、鱼类密度、敏感和不耐受的大型无脊椎动物类群、% 刮刀和溪流和河岸地区较小直径的木材(图 5b;附加文件 2)

火灾严重程度是 PC1 的重要预测因素,表明烧毁更严重的流域具有更高的树木死亡率、抢救性伐木、光利用率、DOC、DON、NH 4 +鱼类密度和溪流温度,并且树冠覆盖度较低,大型无脊椎动物类群敏感且不耐受、溪流和河岸地区的刮刀和小直径木材的百分比(图 5b;附加文件 2)

对火灾严重程度或火灾前年龄部分的协变量响应

第五段

我们假设溪流生物群会对暴露于更严重火灾的溪流做出负面反应,我们的结果与一些顶级捕食者的这一假设一致。在顶级捕食者(鱼类或两栖动物)中,我们发现只有鱼类密度和鱼类生物量密度随火灾严重程度和火灾前站立年龄而变化,而两栖动物密度和两栖动物生物量密度不随任何预测因素变化(图5)。我们观察到鱼类密度与火灾严重程度和火灾前站立年龄及其各自的主要影响之间存在显着的相互作用。鱼类生物量密度随火灾严重程度而变化,但不随火灾前的生存年龄或它们的相互作用而变化。在烧毁较严重的流域中,鱼类密度和鱼类生物量密度较低,但在火灾前年龄较小的流域中,鱼类密度较高

我们假设溪流生物群会对暴露于更严重火灾的溪流做出负面反应,我们的结果与两栖动物的这一假设一致,但不适用于鱼类。两栖动物密度随火灾严重程度和火灾前的生存年龄而变化,而鱼类密度则随火灾严重程度变化。鱼类生物量密度和两栖类生物量密度不随任何预测因素而变化(图5 )。我们没有观察到两栖动物密度与火灾严重程度和火灾前站立年龄之间存在显着的相互作用,但它们各自的主要影响是显着的,在烧伤不太严重的流域和火灾前站立年龄较老的地区,两栖动物密度更大。烧毁更严重的流域鱼类密度更大

火灾严重程度和火灾前的年龄影响水生生态系统部分

第一段

在燃烧严重程度较高的流域中,植被死亡率、光利用率、DOM浓度、抢救性伐木和溪流温度增加,而冠层覆盖、LW直径、敏感和不耐受的大型无脊椎动物类群、刮刀的功能摄食群、鱼类密度和鱼类生物量密度减少

在燃烧严重程度较高的流域中,植被死亡率、光利用率、DOM浓度、抢救性伐木、溪流温度和鱼类密度增加,而冠层覆盖、LW直径、敏感和不耐受的大型无脊椎动物类群、刮刀的功能摄食群和两栖动物密度下降

火灾严重程度和火灾前的年龄影响水生生态系统部分

第六段

我们发现,在我们的研究区域(包括 24 个地点和多起火灾)燃烧更严重的流域中,鱼类密度和生物量密度下降

我们发现,在我们的研究区域(包括 24 个地点和多起火灾)燃烧更严重的流域中,鱼类密度增加,两栖动物密度下降

火灾严重程度和火灾前的年龄影响水生生态系统部分

第六段

这些变化可能共同导致鱼类密度和鱼类生物量密度的下降。尽管我们的研究中观察到直接下降,但这些本地种群预计将迅速恢复(Rieman and Clayton 1997;Dunham et al. 2003;Rieman et al. 2012;Gomez Isaza et al. 2022),持续监测将有助于我们了解不同火灾现场不同严重程度的恢复情况

这些变化可能共同导致鱼类密度增加和两栖动物密度降低。尽管我们的研究中观察到捕食者反应不一,但这些本地种群预计将很快恢复(Rieman and Clayton 1997;Dunham et al. 2003;Rieman et al. 2012;Gomez Isaza et al. 2022),持续监测将有助于我们了解不同火灾现场不同火灾严重程度的恢复情况

结论

在喀斯喀特西部特大火灾发生后的前 8 至 11 个月内,我们发现更严重的火灾烧毁了更多的上层河岸植被,导致光照、DOM 浓度和大型无脊椎动物密度增加,同时树冠覆盖度、LW 直径、大型无脊椎动物多样性和生物多样性减少。鱼密度

在西部喀斯喀特特大火灾发生后的前 8 至 11 个月内,我们发现更严重的火灾烧毁了更多的上层河岸植被,导致光照、DOM 浓度以及大型无脊椎动物和鱼类密度增加,同时树冠覆盖度、LW 直径和大型无脊椎动物多样性减少和两栖动物密度

附加文件5

生物变量作为火灾前站立年龄 (y) 的函数。变量包括:a) 无灰干质量 (gm −2 ),b) 收集器-过滤器 (%),c) 粉碎机 (%),d) EPT (%),e) 两栖动物密度(数量 m −2)和 f)

两栖动物生物量密度 (gm −2 )

生物变量作为火灾前耐龄 (y)和火灾严重程度 (RAVG)的函数。变量包括:a) 无灰干质量 (gm −2 ),b) 收集器-过滤器 (%),c) 粉碎机 (%),d) EPT (%),e)鱼类生物量密度(gm −2 ), f) 两栖动物生物量密度 (gm -2 )

  1. Coble,AA,Penaluna,BE,Six,LJ 等人。火灾严重程度影响俄勒冈州西部流域的大型木材和溪流生态系统反应。消防生态学 19, 34 (2023)。https://doi.org/10.1186/s42408-023-00192-5。

下载参考资料

作者和单位

  1. NCASI, 2438 NW Professional Drive, 科瓦利斯, 俄勒冈州, 97330, 美国

    阿什利·A·科布尔

  2. 美国农业部林务局,太平洋西北研究站,3200 SW Jefferson Way,科瓦利斯,俄勒冈州,97331,美国

    布鲁克·E·佩纳鲁纳

  3. Weyerhaeuser Company, 505 N Pearl St, Centralia, WA, 98531, 美国

    劳拉·J·六号

  4. NCASI,1117 3Rd Street,阿纳科特斯,华盛顿州,98221,美国

    杰克·维斯库尔

作者
  1. Ashley A. Coble查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  2. Brooke E. Penaluna查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  3. 劳拉·J·六查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  4. Jake Verschuyl查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

通讯作者

通讯作者:Ashley A. Coble。

开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的出处中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。

转载和许可

检查更新。 通过 CrossMark 验证货币和真实性

引用这篇文章

Coble,AA,Penaluna,BE,Six,LJ等人。更正:火灾严重程度影响俄勒冈州西部流域的大型木材和溪流生态系统反应。消防生态学 20 , 5 (2024)。https://doi.org/10.1186/s42408-023-00240-0

下载引文

  • 发表

  • DOI https://doi.org/10.1186/s42408-023-00240-0

分享此文章

您与之分享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

更新日期:2024-01-18
down
wechat
bug