当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal transport of defective β-Ga2O3 and B(In)GaO3 alloys from atomistic simulations
Journal of Vacuum Science & Technology A ( IF 2.9 ) Pub Date : 2024-01-12 , DOI: 10.1116/6.0003214
Xiaoning Zhang 1, 2 , Haoyu Dong 1, 2 , Chao Yang 1, 2 , Xi Liang 1, 2 , Xing Li 1, 2 , Jia-Yue Yang 1, 2 , Linhua Liu 1, 2
Affiliation  

β-Ga2O3 is a new generation of semiconductor material with a wide bandgap of 4.9 eV. However, the β-Ga2O3 devices inevitably produce defects within them after irradiation, leading to changes in their thermal conductivities. At present, the effect of radiation-damage-induced defects on thermal conductivity of β-Ga2O3 has not been carried out. Herein, we have employed molecular dynamics simulations to investigate the impact of defects on the thermal transport of β-Ga2O3, and the obtained thermal conductivity of non-defect β-Ga2O3 is in good agreement with recent reports. Our findings indicate that the thermal conductivity of β-Ga2O3 at room temperature exhibits a consistent decrease with an increase in the concentration of Ga vacancies, but shows a decreasing and then increasing trend as the number of O vacancies increases. In addition, doping/alloying is found to improve the irradiation resistance of β-Ga2O3 based on reported defect formation energy calculations, so the mechanism of alloying effect on the thermal conductivity is deeply analyzed through first-principles calculations. Moreover, the lattice thermal conductivities of ordered InGaO3 and BGaO3 alloys are predicted by solving the phonon Boltzmann transport equation. The obtained results that κ(Ga2O3) = κ(BGaO3) > κ(InGaO3) are attributed to the combined effect of volume, specific heat capacity, group velocity, and phonon lifetime of the three materials. This work can help to disclose the radiation damage influence on thermal properties of β-Ga2O3 semiconductors.

中文翻译:

通过原子模拟研究有缺陷的 β-Ga2O3 和 B(In)GaO3 合金的热传输

β-Ga2O3是新一代宽带隙半导体材料,禁带宽度为4.9 eV。然而,β-Ga2O3器件在辐照后不可避免地会在内部产生缺陷,导致其热导率发生变化。目前,辐射损伤缺陷对β-Ga2O3热导率的影响尚未开展。在此,我们采用分子动力学模拟研究了缺陷对β-Ga2O3热传输的影响,获得的无缺陷β-Ga2O3的热导率与最近的报道吻合良好。我们的研究结果表明,β-Ga2O3在室温下的热导率随着Ga空位浓度的增加而呈现出一致的下降趋势,但随着O空位数量的增加而呈现先下降后上升的趋势。此外,根据报道的缺陷形成能计算发现,掺杂/合金化可以提高β-Ga2O3的耐辐照性能,因此通过第一性原理计算深入分析了合金化对热导率的影响机制。此外,通过求解声子玻尔兹曼输运方程,预测了有序InGaO3和BGaO3合金的晶格热导率。得到的结果是κ(Ga 2 O 3 )=κ(BGaO 3 )>1。κ(InGaO3) 归因于三种材料的体积、比热容、群速度和声子寿命的综合影响。这项工作有助于揭示辐射损伤对β-Ga2O3半导体热性能的影响。
更新日期:2024-01-12
down
wechat
bug