当前位置: X-MOL 学术Sci. China Phys. Mech. Astronomy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergy between CSST galaxy survey and gravitational-wave observation: Inferring the Hubble constant from dark standard sirens
Science China Physics, Mechanics & Astronomy ( IF 6.4 ) Pub Date : 2024-01-15 , DOI: 10.1007/s11433-023-2260-2
Ji-Yu Song , Ling-Feng Wang , Yichao Li , Ze-Wei Zhao , Jing-Fei Zhang , Wen Zhao , Xin Zhang

Gravitational waves (GWs) from compact binary coalescences encode the absolute luminosity distances of GW sources. Once the redshifts of GW sources are known, one can use the distance-redshift relation to constrain cosmological parameters. One way to obtain the redshifts is to localize GW sources by GW observations and then use galaxy catalogs to determine redshifts from a statistical analysis of redshift information of the potential host galaxies, commonly referred to as the dark siren method. The third-generation (3G) GW detectors are planned to work in the 2030s and will observe numerous compact binary coalescences. Using these GW events as dark sirens requires high-quality galaxy catalogs from future sky survey projects. The China Space Station Telescope (CSST) will be launched in 2024 and will observe billions of galaxies within a 17500 deg2 survey area with redshift up to z ∼ 4, providing photometric and spectroscopic galaxy catalogs. In this work, we simulate the CSST galaxy catalogs and the 5-year GW data from the 3G GW detectors and combine them to infer the Hubble constant (H0). Our results show that the measurement precision of H0 could reach the sub-percent level, meeting the standard of precision cosmology. We conclude that the synergy between CSST and the 3G GW detectors is of great significance in measuring the Hubble constant.

更新日期:2024-01-20
down
wechat
bug