当前位置: X-MOL 学术Supercond. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the coupling of magnetic moments to superconducting quantum interference devices
Superconductor Science and Technology ( IF 3.6 ) Pub Date : 2024-01-19 , DOI: 10.1088/1361-6668/ad1ae9
J Linek , M Wyszynski , B Müller , D Korinski , M V Milošević , R Kleiner , D Koelle

We investigate the coupling factor φ µ that quantifies the magnetic flux Φ per magnetic moment µ of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating ϕμ(r,eˆμ) vs. position r and orientation eˆμ of the dipole anywhere in space from the magnetic field BJ(r) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg–Landau theory to calculate φ µ from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( ra= inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for φ µ from simple filamentary loop models with simulation results for loops with finite width w (outer size A > a), thickness d and London penetration depth λ L and show that for thin ( da ) and narrow (w < a) loops the introduction of an effective loop size aeff in the filamentary loop-model expressions results in good agreement with simulations. For a dipole placed right in the center of the loop, simulations provide an expression ϕμ(a,A,d,λL) that covers a wide parameter range. In the near-field regime (dipole centered at small distance z above one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered. For this case, we compare simulations with an analytical expression derived for a homogeneous current density distribution, which yields excellent agreement for λL>w,d . Moreover, we analyze the improvement of φ µ provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.

中文翻译:

磁矩与超导量子干涉装置的耦合

我们研究耦合因子φ µ 量化每个磁矩的磁通量 Φµ与超导量子干涉装置(SQUID)耦合的点状磁偶极子。通过微小的载流(安培)环路来表示偶极子,SQUID 和安培环路的互感互感提供了一种优雅的计算方法 φμr,e^μ 与位置 r 和方向 e^μ 空间中任意位置的偶极子的磁场 Jr 由 SQUID 回路中循环的超电流产生。我们使用基于 London 和 Ginzburg-Landau 理论的数值模拟来计算φ µ 来自各种超导回路几何形状的超电流密度分布。我们对待远场制度( rA= SQUID 环的内部尺寸),偶极子放置在(沿)圆形或方形环的对称轴上。我们比较表达式φ µ 来自简单的丝状环路模型以及有限宽度环路的模拟结果w(外部尺寸A > A), 厚度d和伦敦渗透深度λ L并表明对于薄 ( dA )和狭窄(w < A) 循环引入有效循环大小 A有效值 丝状环模型表达式中的结果与模拟结果非常一致。对于放置在环路中心的偶极子,模拟提供了一个表达式 φμA,A,d,λL 涵盖了广泛的参数范围。在近场区域(偶极子以小距离为中心z在一个 SQUID 臂上方),只需考虑与代表 SQUID 臂的单个条带的耦合。对于这种情况,我们将模拟与针对均匀电流密度分布导出的解析表达式进行比较,这与以下结果非常吻合: λL>w,d 。此外,我们还分析了改进φ µ 通过在磁偶极子下方的 SQUID 臂中引入狭窄的收缩来提供。
更新日期:2024-01-19
down
wechat
bug