当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic Metal-Gated Nano-Sheet Field Effect Transistor and Nano-Sheet Tunnel Field Effect Transistor Based Hydrogen Gas Sensor- A Design Perspective
Advanced Theory and Simulations ( IF 3.3 ) Pub Date : 2024-01-12 , DOI: 10.1002/adts.202301031
Geetika Bansal 1 , Aditya Tiwari 1 , Budhaditya Majumdar 2 , Subhas C. Mukhopadhyay 3 , Sayan Kanungo 1, 4
Affiliation  

In this work, for the first time, the catalytic metal gate (CMG) based nanosheet Field Effect Transistor (NSFET) and nanosheet Tunnel Field Effect Transistor (NSTFET) are proposed for nano-scale device dimensions, and the different design aspects of catalytic metal gate (CMG)-based transduction for Hydrogen (H2) sensing are extensively investigated using numerical device simulation. The influence of applied biasing conditions and structural parameter specifications on the sensing performance of CMG-NSFET and CMG-NSTFET are methodically analyzed from device electrostatics and carrier transport mechanisms. Furthermore, the relative maximum sensitivity variations with H2-partial pressure, ambient temperature, and the presence of ambient Oxygen are comprehensively studied. The study reveals that compared to CMG-NSFET, the CMG-NSTFET demonstrates a high immunity against bias and doping variations, with a notably higher (> 50%) sensitivity within low H2 partial pressures (10−15 – 10−10 Torr). Next, the sensing performance of CMG-NSTFET is systematically optimized through a band-gap and gate-stack engineering approach, leading to a 180% to 650% sensitivity improvement from lower (10−15 Torr) to higher (10−5 Torr) range of H2 partial pressure. Finally, the performance of optimized CMG-NSFET and CMG-NSTFET are extensively benchmarked against other reported nanostructured CMG-FET and TFET-based H2 gas sensors, exhibiting a notably higher sensitivity in the proposed sensors.

中文翻译:

基于催化金属栅极纳米片场效应晶体管和纳米片隧道场效应晶体管的氢气传感器 - 设计视角

在这项工作中,首次针对纳米级器件尺寸提出了基于催化金属栅极(CMG)的纳米片场效应晶体管(NSFET)和纳米片隧道场效应晶体管(NSTFET),以及催化金属的不同设计方面使用数值设备模拟对基于门(CMG)的氢(H 2 )传感转导进行了广泛研究。从器件静电学和载流子传输机制出发,系统地分析了施加偏置条件和结构参数规格对 CMG-NSFET 和 CMG-NSTFET 传感性能的影响。此外,还全面研究了相对最大灵敏度随H 2分压、环境温度和环境氧气的存在而变化。研究表明,与 CMG-NSFET 相比,CMG-NSTFET 对偏压和掺杂变化具有较高的抗扰度,在低 H 2分压 (10 −15 – 10 −10  Torr)内具有显着更高 (> 50%) 的灵敏度。接下来,通过带隙和栅极堆叠工程方法系统地优化了 CMG-NSTFET 的传感性能,使灵敏度从较低 (10 -15  Torr) 提高到较高 (10 -5  Torr ) 180% 至 650% H 2分压范围。最后,优化的 CMG-NSFET 和 CMG-NSTFET 的性能与其他报道的纳米结构 CMG-FET 和基于 TFET 的 H 2气体传感器进行了广泛的基准测试,在所提出的传感器中表现出明显更高的灵敏度。
更新日期:2024-01-12
down
wechat
bug