当前位置: X-MOL 学术Methods Ecol. Evol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LC-ICP-MS analysis of inositol phosphate isomers in soil offers improved sensitivity and fine-scale mapping of inositol phosphate distribution
Methods in Ecology and Evolution ( IF 6.6 ) Pub Date : 2024-02-04 , DOI: 10.1111/2041-210x.14292
Joseph J. Carroll 1 , Colleen Sprigg 1 , Graham Chilvers 2 , Ignacio Delso 3 , Megan Barker 4 , Filipa Cox 4 , David Johnson 4 , Charles A. Brearley 1
Affiliation  

1 INTRODUCTION

Phosphorus (P) is a major nutrient that limits plant growth in diverse ecosystems, including tropical forests (Cunha et al., 2022), boreal forest (Giesler et al., 2012) and species-rich calcareous grassland (Johnson et al., 1999). Sustained input of nitrogen (N) from atmospheric deposition or fertilization increases P limitation of ecosystems globally (Chen et al., 2020) and often results in increased activity of enzymes implicated in organic P degradation (Johnson et al., 2005; Papanikolaou et al., 2010). The chemical diversity of soil P is vast, and resolving the various components of this, especially organic P, is vital to better understand biogeochemical cycling and ecological processes, such as coexistence and dominance of plants in communities (Turner, 2008).

31P NMR spectroscopy of sodium hydroxide-EDTA (NaOH-EDTA) extracts has allowed an analysis of P speciation in soil (Cade-Menun et al., 2002; Doolette et al., 2010; Newman & Tate, 1980; Reusser, Verel, Zindel, et al., 2020). The approach has the advantage of being able to quantify and assign P by speciation (Giles et al., 2011; Jarosch et al., 2015). Even so, assignment of resonances and identification of form of P within complex NMR spectra presented by soil matrices is most powerful when it is combined with spiking of extracts (Doolette et al., 2009; Liu et al., 2014; McLaren et al., 2022). This approach has been used widely to measure inositol phosphates, reported to be a major form of organic P in many soils (Giles et al., 2011; Turner et al., 2002) or undetectable in others (Doolette et al., 2010).

Despite the benefits, there are limitations to the application of 31P NMR to soils. A contemporary issue is deconvolution of overlapping resonances and their isolation from underlying features (Doolette & Smernik, 2015; Jarosch et al., 2015; McLaren et al., 2015; Reusser, Verel, Frossard, et al., 2020). An alternative approach involves the removal of the so-called humic substances (Doolette et al., 2011; Gerke, 2010) by hypobromite oxidation (Irving & Cosgrove, 1981; Reusser, Verel, Zindel, et al., 2020; Turner et al., 2012). An alternative to chemical ‘clean-up’ is chromatographic separation, ideally compatible with NaOH-EDTA extractions (Cade-Menun & Preston, 1996) accepted as the most exhaustive extractant of inositol phosphate from soil matrices.

Here, we describe chromatographic separation and quantification of myo-, scyllo-, neo- and chiro-inositol hexakisphosphate isomers, besides ‘lower’ inositol phosphates, by direct analysis of NaOH-EDTA extracts on chromatography interfaced with inductively coupled plasma-mass spectrometry (ICP-MS). The approach is an extension of earlier ICP-MS work (Rugova et al., 2014), employing the considerable resolving power of anion chromatography on acid gradients for resolution of inositol hexakisphosphates (Whitfield et al., 2018). We use the method to characterize inositol phosphates of forest soils that have been fertilized for 38 years with N, as NH4NO3, and test the hypothesis that N addition leads to a reduction in inositol phosphate pools.



中文翻译:

对土壤中磷酸肌醇异构体进行 LC-ICP-MS 分析可提高灵敏度并精细绘制肌醇磷酸分布图

1 简介

磷 (P) 是限制多种生态系统中植物生长的主要营养素,包括热带森林(Cunha 等人,  2022)、北方森林(Giesler 等人,  2012)和物种丰富的钙质草原(Johnson 等人,2012)。  1999)。来自大气沉降或施肥的氮 (N) 持续输入增加了全球生态系统对磷的限制(Chen 等,  2020),并且常常导致与有机磷降解相关的酶活性增加(Johnson 等,  2005;Papanikolaou 等) .,  2010)。土壤磷的化学多样性非常丰富,解决其中的各种成分,特别是有机磷,对于更好地了解生物地球化学循环和生态过程(例如植物在群落中的共存和优势)至关重要(Turner,2008 

氢氧化钠-EDTA (NaOH-EDTA) 提取物的 31 P NMR 光谱可以分析土壤中的 P 形态(Cade-Menun 等人, 2002 年;Doolette 等人,  2010 年;Newman & Tate,  1980 年;Reusser, Verel) ,Zindel 等,  2020)。该方法的优点是能够通过形态对 P 进行量化和分配(Giles 等,  2011;Jarosch 等,  2015)。即便如此,当与提取物的加标相结合时,土壤基质呈现的复杂 NMR 谱中的共振分配和 P 形式的识别是最有效的(Doolette 等人,  2009 年;Liu 等人,  2014 年;McLaren 等人,2014 年)。 ,  2022)。这种方法已广泛用于测量肌醇磷酸盐,据报道,肌醇磷酸盐是许多土壤中有机磷的主要形式(Giles 等人,  2011;Turner 等人,  2002)或在其他土壤中检测不到(Doolette 等人,  2010) 。

尽管有这些好处,但31 P NMR 在土壤中的应用仍存在局限性。当代的一个问题是重叠共振的反卷积及其与潜在特征的隔离(Doolette & Smernik,  2015 ; Jarosch et al.,  2015 ; McLaren et al.,  2015 ; Reusser, Verel, Frossard, et al.,  2020)。另一种方法是通过次溴酸盐氧化去除所谓的腐殖质(Doolette 等人,  2011 年;Gerke,  2010 年)(Irving & Cosgrove,  1981 年;Reusser、Verel、Zindel 等人,  2020 年;Turner 等人) .,  2012)。化学“净化”的替代方法是色谱分离,它与 NaOH-EDTA 萃取(Cade-Menun 和 Preston,  1996)完美兼容,被认为是从土壤基质中提取肌醇磷酸盐的最彻底的萃取剂。

在这里,我们描述了除了“低级”肌醇磷酸酯之外,肌醇鲨肌醇新肌醇和手性肌醇六磷酸异构体的色谱分离和定量,通过在色谱上与电感耦合等离子体质谱联用的 NaOH-EDTA 提取物的直接分析( ICP-MS)。该方法是早期 ICP-MS 工作的延伸(Rugova 等人,  2014),利用酸梯度阴离子色谱的相当大的分辨率来分辨率六磷酸肌醇(Whitfield 等人,  2018)。我们使用该方法来表征已施氮 38 年的森林土壤中的肌醇磷酸盐(NH 4 NO 3),并检验添加氮会导致磷酸肌醇库减少的假设。

更新日期:2024-02-04
down
wechat
bug