当前位置: X-MOL 学术Geom. Funct. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kaufman and Falconer Estimates for Radial Projections and a Continuum Version of Beck’s Theorem
Geometric and Functional Analysis ( IF 2.2 ) Pub Date : 2024-02-05 , DOI: 10.1007/s00039-024-00660-3
Tuomas Orponen , Pablo Shmerkin , Hong Wang

We provide several new answers on the question: how do radial projections distort the dimension of planar sets? Let \(X,Y \subset \mathbb{R}^{2}\) be non-empty Borel sets. If X is not contained in any line, we prove that

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{\mathrm {H}}X,\dim _{\mathrm {H}}Y,1\}. $$

If dimHY>1, we have the following improved lower bound:

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{\mathrm {H}}X + \dim _{\mathrm {H}}Y - 1,1\}. $$

Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. Another corollary is the following continuum version of Beck’s theorem in combinatorial geometry: if \(X \subset \mathbb{R}^{2}\) is a Borel set with the property that dimH(X ∖ )=dimHX for all lines \(\ell \subset \mathbb{R}^{2}\), then the line set spanned by X has Hausdorff dimension at least min{2dimHX,2}.

While the results above concern \(\mathbb{R}^{2}\), we also derive some counterparts in \(\mathbb{R}^{d}\) by means of integralgeometric considerations. The proofs are based on an ϵ-improvement in the Furstenberg set problem, due to the two first authors, a bootstrapping scheme introduced by the second and third author, and a new planar incidence estimate due to Fu and Ren.



中文翻译:

径向投影的考夫曼和福尔科纳估计以及贝克定理的连续版

我们对这个问题提供了几个新的答案:径向投影如何扭曲平面集合的维度?设\(X,Y \subset \mathbb{R}^{2}\)为非空 Borel 集。如果X不包含在任何行中,我们证明

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _ {\mathrm {H}}X,\dim _{\mathrm {H}}Y,1\}。 $$

如果暗淡H Y >1,我们有以下改进的下界:

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _ {\mathrm {H}}X + \dim _{\mathrm {H}}Y - 1,1\}。 $$

我们的结果解决了 Lund-Thang-Huong、Liu 和第一作者的猜想。另一个推论是组合几何中贝克定理的以下连续统版本:如果\(X \subset \mathbb{R}^{2}\)是一个 Borel 集,其属性为 dim H ( X  ∖  )=dim H X对于所有线\(\ell \subset \mathbb{R}^{2}\) ,则X跨越的线集的豪斯多夫维度至少为 min{2dim H X ,2}。

虽然上面的结果涉及\(\mathbb{R}^{2}\),但我们还通过积分几何考虑推导出\(\mathbb{R}^{d}\)中的一些对应项。这些证明基于Furstenberg 集问题中的ϵ改进(由于两位第一作者)、第二和第三作者引入的引导方案以及由于 Fu 和 Ren 的新平面发生率估计。

更新日期:2024-02-06
down
wechat
bug