当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supercharged two-dimensional tweezer array with more than 1000 atomic qubits
Optica ( IF 10.4 ) Pub Date : 2024-02-07 , DOI: 10.1364/optica.513551
Lars Pause , Lukas Sturm , Marcel Mittenbühler , Stephan Amann 1 , Tilman Preuschoff , Dominik Schäffner , Malte Schlosser , Gerhard Birkl
Affiliation  

We report on the realization of a large-scale quantum-processing architecture surpassing the tier of 1000 atomic qubits. By tiling multiple microlens-generated tweezer arrays, each operated by an independent laser source, we can eliminate laser-power limitations in the number of allocatable qubits. Already with two separate arrays, we implement combined 2D configurations of 3000 qubit sites with a mean number of 1167(46) single-atom quantum systems. The transfer of atoms between the two arrays is achieved with high efficiency. Thus, supercharging one array designated as the quantum processing unit with atoms from the secondary array significantly increases the number of qubits and the initial filling fraction. This drastically enlarges attainable qubit cluster sizes and success probabilities allowing us to demonstrate the defect-free assembly of clusters of up to 441 qubits with persistent stabilization at a near-unity filling fraction over tens of detection cycles. The presented method substantiates neutral atom quantum information science by facilitating configurable geometries of highly scalable quantum registers with immediate application in Rydberg-state-mediated quantum simulation, fault-tolerant universal quantum computation, quantum sensing, and quantum metrology.

中文翻译:

具有超过 1000 个原子量子位的增压二维镊子阵列

我们报告了超过 1000 个原子量子位层的大规模量子处理架构的实现。通过平铺多个微透镜生成的镊子阵列(每个镊子阵列由独立的激光源操作),我们可以消除可分配量子位数量的激光功率限制。已经有了两个独立的阵列,我们实现了 3000 个量子位点的组合二维配置,平均数量为 1167(46) 个单原子量子系统。原子在两个阵列之间的转移是高效实现的。因此,用来自次级阵列的原子对指定为量子处理单元的一个阵列进行增压显着增加了量子位的数量和初始填充分数。这极大地扩大了可达到的量子位簇大小和成功概率,使我们能够演示多达 441 个量子位的簇的无缺陷组装,并在数十个检测周期内以接近统一的填充分数持续稳定。所提出的方法通过促进高度可扩展的量子寄存器的可配置几何结构来证实中性原子量子信息科学,并立即应用于里德堡态介导的量子模拟、容错通用量子计算、量子传感和量子计量。
更新日期:2024-02-07
down
wechat
bug