当前位置: X-MOL 学术Appl. Biol. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction: Impact of biochar and compost amendment on corn yield and greenhouse gas emissions under waterlogged conditions
Applied Biological Chemistry ( IF 3.2 ) Pub Date : 2024-02-13 , DOI: 10.1186/s13765-024-00868-9
Han-Na Cho , Minji Shin , Ikhyeong Lee , Haeun Ryoo , Bharat Sharma Acharya , Jae-Hyuk Park , Yong Hwa Cheong , Ju-Sik Cho , Se-Won Kang

Correction: Applied Biological Chemistry (2023) 66:87 https://doi.org/10.1186/s13765-023-00845-8

Following publication of the original article [1], the authors would like to correct the errors occurred in Fig. 1, Table 1, Materials and Methods, and Results section.

Fig. 1
figure 1

Mean air temperature (a) and total precipitation (b) during corn’s season

Full size image

The corrected sentences and the correct version of Fig. 1 and Table 1 are given below.

The original article [1] has been corrected.

Monitoring of CO2 and N2O fluxes

The CO2 and N2O fluxes (mg m−2 h−1) were monitored through a static chamber with 0.07 m2 area and 0.02 m3 volume. The chamber was placed between corn plants to a soil depth of 20 cm. Gas sampling was performed between 9 and 10 a.m. every 7 days and samples were collected at 0, 20, and 40 min after chamber closure, using a 10 mL gas tight syringe. The measurements of CO2 and N2O were simultaneously analyzed on a gas chromatograph (8892 GC System, Agilent, USA) with a flame ionization detector (FID) and an electron capture detector (ECD), respectively. Fluxes of CO2 and N2O were calculated using the following equation [29]:

Growth characteristics of plant and corn

Tables 3 and 4 show distinct growth and yield characteristics of corn contingent upon treatment types measured after harvest, respectively. The CP treatment emerged as the most efficacious, consistently exhibiting superior corn growth metrics. Cn registered an average plant height of 184 cm, CP 176 cm, RB 142 cm, and WB 154 cm. CP treatment demonstrated enhanced stem and leaf weights, and corn productivity relative to other treatments. Corn productivity was highest at CP treatment (25.2 t 10 a−1), followed by Cn (22.4 t 10 a−1), and the RB (11.5 t 10 a−1) and WB treatments (13.6 t 10 a−1), respectively. CP treatment manifested a pronounced enhancement in corn biomass, exceeding biomass of Cn treatment by 12.6, RB treatment by 120, and WB treatment by 86%, respectively.

The total weight of corn increased in the order: CP (237 g) > Cn (191 g) > WB (107 g) > RB (79 g). Similarly, corn yield increased in the order: CP (157 g) > Cn (119 g) > WB (71 g) > RB (53 g). Notably, there was a negligible disparity between the RB and WB treatments in straw yield, grain yield, grain index and corn productivity but both were distinctively lower than CP treatment. CP treatment registered a peak grain yield at 120 g and corn productivity at 2.51 t 10 a−1.

Table 1 Soil properties of the experimental soil used in the study
Full size table
  1. Cho H-N, Shin M, Lee I, Ryoo H, Acharya BS, Park J-H, Cheong YH, Cho J-S, Kang S-W (2023) Impact of biochar and compost amendment on corn yield and greenhouse gas emissions under waterlogged conditions. Appl Biol Chem 66:87. https://doi.org/10.1186/s13765-023-00845-8

    Article CAS Google Scholar

Download references

Authors and Affiliations

  1. Department of Agricultural Chemistry, Sunchon National University, Suncheon, 57922, Republic of Korea

    Han-Na Cho, Jae-Hyuk Park, Yong Hwa Cheong, Ju-Sik Cho & Se-Won Kang

  2. Department of Bio-envrionmental Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea

    Minji Shin, Ikhyeong Lee & Haeun Ryoo

  3. Rodale Institute, Southeast Organic Center, Chattahoochee Hills, GA, 30268, USA

    Bharat Sharma Acharya

  4. Department of Agricultural Life Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea

    Yong Hwa Cheong, Ju-Sik Cho & Se-Won Kang

Authors
  1. Han-Na ChoView author publications

    You can also search for this author in PubMed Google Scholar

  2. Minji ShinView author publications

    You can also search for this author in PubMed Google Scholar

  3. Ikhyeong LeeView author publications

    You can also search for this author in PubMed Google Scholar

  4. Haeun RyooView author publications

    You can also search for this author in PubMed Google Scholar

  5. Bharat Sharma AcharyaView author publications

    You can also search for this author in PubMed Google Scholar

  6. Jae-Hyuk ParkView author publications

    You can also search for this author in PubMed Google Scholar

  7. Yong Hwa CheongView author publications

    You can also search for this author in PubMed Google Scholar

  8. Ju-Sik ChoView author publications

    You can also search for this author in PubMed Google Scholar

  9. Se-Won KangView author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Se-Won Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, HN., Shin, M., Lee, I. et al. Correction: Impact of biochar and compost amendment on corn yield and greenhouse gas emissions under waterlogged conditions. Appl Biol Chem 67, 14 (2024). https://doi.org/10.1186/s13765-024-00868-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13765-024-00868-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:

修正:淹水条件下生物炭和堆肥改良剂对玉米产量和温室气体排放的影响

更正:应用生物化学(2023)66:87 https://doi.org/10.1186/s13765-023-00845-8

原文章 [1] 发表后,作者希望纠正图 1、表 1、材料和方法以及结果部分中出现的错误。

图。1
图1

玉米季节平均气温 ( a ) 和总降水量 ( b )

全尺寸图像

下面给出图1和表1的更正句子和正确版本。

原文章[1]已更正。

CO 2和 N 2 O 通量监测

通过面积为0.07 m 2、体积为0.02 m 3 的静态室监测CO 2和N 2 O通量(mg m -2  h -1 ) 。该室放置在玉米植株之间,土壤深度为 20 厘米。每 7 天上午 9 点至 10 点进行一次气体取样,并使用 10 mL 气密注射器在室关闭后 0、20 和 40 分钟收集样本。 CO 2和N 2 O的测量结果在气相色谱仪(8892 GC 系统,安捷伦,美国)上同时分析,分别配有氢火焰离子化检测器(FID)和电子捕获检测器(ECD)。 CO 2和 N 2 O 的通量使用以下公式计算[29]:

植物和玉米的生长特性

表 3 和表 4 分别显示了玉米不同的生长和产量特征,具体取决于收获后测量的处理类型。 CP 处理成为最有效的,始终表现出优异的玉米生长指标。 Cn的平均株高为184厘米,CP为176厘米,RB为142厘米,WB为154厘米。与其他处理相比,CP 处理显示出茎叶重量以及玉米生产力的提高。 CP处理时玉米生产力最高(25.2 t 10 a -1),其次是Cn(22.4 t 10 a -1)、RB(11.5 t 10 a -1)和WB处理(13.6 t 10 a -1) , 分别。 CP处理的玉米生物量显着增加,分别比Cn处理高12.6%、RB处理高120%、WB处理高86%。

玉米总重量增加的顺序为:CP(237克)>Cn(191克)>WB(107克)>RB(79克)。同样,玉米产量增加的顺序为:CP (157 g) > Cn (119 g) > WB (71 g) > RB (53 g)。值得注意的是,RB 和 WB 处理在秸秆产量、谷物产量、谷物指数和玉米生产力方面的差异可以忽略不计,但均明显低于 CP 处理。 CP处理的峰值谷物产量为120克,玉米生产率为2.51t 10 a -1

表1 研究所用试验土壤的土壤性质
全尺寸桌子
  1. Cho HN, Shin M, Lee I, Ryoo H, Acharya BS, Park JH, Cheong YH, Cho JS, Kang SW (2023) 生物炭和堆肥改良剂对淹水条件下玉米产量和温室气体排放的影响。应用生物化学66:87。 https://doi.org/10.1186/s13765-023-00845-8

    文章 CAS 谷歌学术

下载参考资料

作者和单位

  1. 顺天国立大学农业化学系,顺天市,57922,韩国

    Han-Na Cho、Jae-Hyuk Park、Yong Hwa Cheong、Ju-Sik Cho 和 Se-Won Kang

  2. 顺天国立大学生物环境科学系,顺天市,57922,韩国

    申敏智、李益庆、柳海恩

  3. 罗代尔研究所,东南有机中心,查塔胡奇山,佐治亚州,30268,美国

    巴拉特·夏尔马·阿查里亚

  4. 国立顺天大学农业生命科学系,顺天市,57922,大韩民国

    张容和、曹柱植、姜世元

作者
  1. 曹汉娜查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  2. Minji Shin查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  3. 李益庆查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  4. Haeun Ryoo查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  5. Bharat Sharma Acharya查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  6. Jae-Hyuk Park查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  7. Yong Hwa Cheong查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  8. 曹柱植查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  9. Se-Won Kang查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

通讯作者

康世元通讯。

出版商备注

施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。

开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的出处中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。

转载和许可

检查更新。通过 CrossMark 验证货币和真实性

引用这篇文章

Cho, HN.、Shin, M.、Lee, I.等人。修正:生物炭和堆肥改良剂对淹水条件下玉米产量和温室气体排放的影响。应用生物化学 67 , 14 (2024)。 https://doi.org/10.1186/s13765-024-00868-9

下载引文

  • 发表

  • DOI https://doi.org/10.1186/s13765-024-00868-9

分享此文章

您与之分享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

更新日期:2024-02-13
down
wechat
bug