当前位置: X-MOL 学术Inverse Probl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fourier series-based approximation of time-varying parameters in ordinary differential equations
Inverse Problems ( IF 2.1 ) Pub Date : 2024-02-01 , DOI: 10.1088/1361-6420/ad1fe5
Anna Fitzpatrick , Molly Folino , Andrea Arnold

Many real-world systems modeled using differential equations involve unknown or uncertain parameters. Standard approaches to address parameter estimation inverse problems in this setting typically focus on estimating constants; yet some unobservable system parameters may vary with time without known evolution models. In this work, we propose a novel approximation method inspired by the Fourier series to estimate time-varying parameters (TVPs) in deterministic dynamical systems modeled with ordinary differential equations. Using ensemble Kalman filtering in conjunction with Fourier series-based approximation models, we detail two possible implementation schemes for sequentially updating the time-varying parameter estimates given noisy observations of the system states. We demonstrate the capabilities of the proposed approach in estimating periodic parameters, both when the period is known and unknown, as well as non-periodic TVPs of different forms with several computed examples using a forced harmonic oscillator. Results emphasize the importance of the frequencies and number of approximation model terms on the time-varying parameter estimates and corresponding dynamical system predictions.
更新日期:2024-02-01
down
wechat
bug