当前位置: X-MOL 学术Electrophoresis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytical solutions for viscoelectric effects in electrokinetic nanochannels
Electrophoresis ( IF 2.9 ) Pub Date : 2024-02-13 , DOI: 10.1002/elps.202300204
Kunlin Ma 1 , Ashwin Ramachandran 2 , Juan G. Santiago 1
Affiliation  

Understanding electrokinetic transport in nanochannels and nanopores is essential for emerging biological and electrochemical applications. The viscoelectric effect is an important mechanism implicated in the increase of local viscosity due to the polarization of a solvent under a strong electric field. However, most analyses of the viscoelectric effect have been limited to numerical analyses. In this work, we present a set of analytical solutions applicable to the physical description of viscoelectric effects in nanochannel electrokinetic systems. To achieve such closed-form solutions, we employ the Debye–Hückel approximation of small diffuse charge layer potentials compared to the thermal potential. We analyze critical parameters, including electroosmotic flow profiles, electroosmotic mobility, flow rate, and channel conductance. We compare and benchmark our analytical solutions with published predictions from numerical models. Importantly, we leverage these analytical solutions to identify essential thermophysical and nondimensional parameters that govern the behavior of these systems. We identify scaling parameters and relations among surface charge density, ionic strength, and nanochannel height.

中文翻译:

动电纳米通道中粘电效应的分析解决方案

了解纳米通道和纳米孔中的动电传输对于新兴的生物和电化学应用至关重要。粘电效应是由于溶剂在强电场下极化而导致局部粘度增加的重要机制。然而,大多数粘电效应的分析仅限于数值分析。在这项工作中,我们提出了一组适用于纳米通道电动系统中粘电效应的物理描述的分析解决方案。为了实现这种封闭式解决方案,我们采用与热势相比的小扩散电荷层势的 Debye-Hückel 近似。我们分析关键参数,包括电渗流剖面、电渗迁移率、流速和通道电导。我们将我们的分析解决方案与已发布的数值模型预测进行比较和基准测试。重要的是,我们利用这些分析解决方案来识别控制这些系统行为的基本热物理和无量纲参数。我们确定了缩放参数以及表面电荷密度、离子强度和纳米通道高度之间的关系。
更新日期:2024-02-15
down
wechat
bug