当前位置: X-MOL 学术Int. J. Numer. Meth. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evolutionary topology optimization approach to design multiphase soundproof systems with poroelastic media
International Journal for Numerical Methods in Engineering ( IF 2.9 ) Pub Date : 2024-02-14 , DOI: 10.1002/nme.7447
Rodrigo L. Pereira 1 , Lidy M. Anaya‐Jaimes 1 , Renato Pavanello 1
Affiliation  

With the constant development of cities, noise sources have become increasingly present inside and outside living environments. Consequently, soundproof systems comprised of porous materials have been widely adopted as filling fabric of closed-space structures, such as in the components of buildings, airplanes or automobiles. However, in many situations, simply filling spaces may not be the most effective approach. In that scenario, this work introduces a multiphase acoustic topology optimization methodology to design closed-space structures for sound attenuation. Based on the Bi-directional Evolutionary Structural Optimization (BESO) algorithm, the proposed approach combines Biot's poroelasticity equations, expressed in the mixed u $$ \mathbf{u} $$ /p form, and the Unified Multiphase (UMP) technique to fully describe the multiphysics involved in the acoustic, poroelastic and elastic model relations. An objective function contemplating different combinations of structural, viscous and thermal dissipated powers is maximized over multiple frequencies. Volume constraints in each material phase and a novel material interpolation scheme are also considered. The resultant topologies present enhanced dissipated power levels and manufacturability, even when compared with various baseline configurations of similar volume fractions.

中文翻译:

使用多孔弹性介质设计多相隔音系统的演化拓扑优化方法

随着城市的不断发展,生活环境内外的噪声源越来越多。因此,由多孔材料组成的隔音系统已被广泛采用作为封闭空间结构的填充织物,例如在建筑物、飞机或汽车的部件中。然而,在许多情况下,简单地填充空间可能并不是最有效的方法。在这种情况下,这项工作引入了多相声学拓扑优化方法来设计用于声音衰减的封闭空间结构。基于双向进化结构优化(BESO)算法,所提出的方法结合了 Biot 的孔隙弹性方程,以混合形式表示 $$ \mathbf{u} $$ /p形式,并采用统一多相(UMP)技术来全面描述涉及声学、孔隙弹性和弹性模型关系的多物理场。考虑结构、粘性和热耗散功率的不同组合的目标函数在多个频率上最大化。还考虑了每个材料相的体积约束和新颖的材料插值方案。即使与相似体积分数的各种基准配置相比,所得的拓扑也呈现出增强的耗散功率水平和可制造性。
更新日期:2024-02-14
down
wechat
bug