当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2024-02-16 , DOI: 10.1038/s41565-024-01614-4
Huan Li , Rongwei Meng , Chao Ye , Anton Tadich , Wuxing Hua , Qinfen Gu , Bernt Johannessen , Xiao Chen , Kenneth Davey , Shi-Zhang Qiao

The activity of electrocatalysts for the sulfur reduction reaction (SRR) can be represented using volcano plots, which describe specific thermodynamic trends. However, a kinetic trend that describes the SRR at high current rates is not yet available, limiting our understanding of kinetics variations and hindering the development of high-power Li||S batteries. Here, using Le Chatelier’s principle as a guideline, we establish an SRR kinetic trend that correlates polysulfide concentrations with kinetic currents. Synchrotron X-ray adsorption spectroscopy measurements and molecular orbital computations reveal the role of orbital occupancy in transition metal-based catalysts in determining polysulfide concentrations and thus SRR kinetic predictions. Using the kinetic trend, we design a nanocomposite electrocatalyst that comprises a carbon material and CoZn clusters. When the electrocatalyst is used in a sulfur-based positive electrode (5 mg cm−2 of S loading), the corresponding Li||S coin cell (with an electrolyte:S mass ratio of 4.8) can be cycled for 1,000 cycles at 8 C (that is, 13.4 A gS−1, based on the mass of sulfur) and 25 °C. This cell demonstrates a discharge capacity retention of about 75% (final discharge capacity of 500 mAh gS−1) corresponding to an initial specific power of 26,120 W kgS−1 and specific energy of 1,306 Wh kgS−1.



中文翻译:

通过过渡金属/碳纳米复合电催化剂工程开发高功率锂||硫电池

硫还原反应 (SRR) 电催化剂的活性可以使用描述特定热力学趋势的火山图来表示。然而,描述高电流倍率下SRR的动力学趋势尚不可用,这限制了我们对动力学变化的理解,并阻碍了高功率Li||S电池的发展。在这里,以 Le Chatelier 原理为指导,我们建立了 SRR 动力学趋势,将多硫化物浓度与动力学电流相关联。同步加速器 X 射线吸收光谱测量和分子轨道计算揭示了过渡金属基催化剂中轨道占据在确定多硫化物浓度以及 SRR 动力学预测中的作用。利用动力学趋势,我们设计了一种包含碳材料和 CoZn 簇的纳米复合电催化剂。当该电催化剂用于硫基正极(S负载量5 mg cm -2)时,相应的Li||S纽扣电池(电解液:S质量比为4.8)可在8℃下循环1000次。 C(即,13.4 A g S -1,基于硫的质量)和25℃。该电池表现出约75%的放电容量保持率(最终放电容量为500mAh g S -1),对应于26,120 W kg S -1的初始比功率和1,306 Wh kg S -1的比能量。

更新日期:2024-02-16
down
wechat
bug