当前位置: X-MOL 学术Sens. Actuators A Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The adsorption effect on chemical kinetics at the reaction surface in a microfluidic channel of a biosensor for the SARS-Cov-2 detection
Sensors and Actuators A: Physical ( IF 4.6 ) Pub Date : 2024-02-15 , DOI: 10.1016/j.sna.2024.115175
Yosra Saad , Mohamed Bouzid , Marwa Selmi , Mohamed Hichem Gazzah , Ahmed Mansour Almansour , Amira Yahia Boshra , Sofiene Mohamed Habib Mansouri , Hafedh Belmabrouk

The global impact of the Severe Acute Respiratory Syndrome coronavirus has brought about significant changes in the lives of people worldwide, affecting societies and economies. Consequently, there is a growing need to explore the field of research focused on developing wearable sensors capable of continuously monitoring the presence of viruses in the environment. In this particular study, we simulated the binding reaction of the SARS-CoV-2 protein within a microchannel biosensor. One challenge encountered in this setup is the transportation of the analyte to the biosensor's reaction surface. The limited mass transport leads to the creation of a diffusion boundary layer, impeding the overall kinetic reaction. To improve the biosensor performance by enhancing transport, we thoroughly examined the impact of adsorption phenomena on the chemical kinetics. We compared the kinetic response of the biosensor in both cases, i.e. taking into account the adsorption and neglecting it in the numerical model. A parametric study concerning the trapping coefficient was carried out such as the quantity adsorbed at the saturation of a layer, the concentration at half saturation, and the relaxation time. In addition, we investigated the effect of the length of the reaction surface and the inlet velocity of the fluid. The main novelty in this work is to highlight the importance of adsorption on the kinetics of the binding reaction of the SARS-CoV-2-S protein which results in obtaining a complete simulation of the entire process of SARS-Cov-2 binding reaction. Therefore, the adsorption mechanism was described qualitatively and quantitatively using a kinetic model containing a trapping or source term.

中文翻译:

用于 SARS-Cov-2 检测的生物传感器微流体通道中反应表面的吸附效应对化学动力学的影响

严重急性呼吸系统综合症冠状病毒的全球影响给全世界人民的生活带来了重大变化,影响着社会和经济。因此,越来越需要探索专注于开发能够持续监测环境中病毒存在的可穿戴传感器的研究领域。在这项特殊研究中,我们模拟了微通道生物传感器内 SARS-CoV-2 蛋白的结合反应。该装置遇到的一个挑战是将分析物运输到生物传感器的反应表面。有限的质量传递导致扩散边界层的产生,阻碍了整体动力学反应。为了通过增强传输来提高生物传感器的性能,我们彻底研究了吸附现象对化学动力学的影响。我们比较了两种情况下生物传感器的动力学响应,即在数值模型中考虑吸附并忽略吸附。对层的饱和吸附量、半饱和浓度、弛豫时间等捕获系数进行了参数研究。此外,我们还研究了反应表面长度和流体入口速度的影响。这项工作的主要新颖之处在于强调了吸附对 SARS-CoV-2-S 蛋白结合反应动力学的重要性,从而获得了 SARS-Cov-2 结合反应整个过程的完整模拟。因此,使用包含捕获或源项的动力学模型定性和定量地描述了吸附机制。
更新日期:2024-02-15
down
wechat
bug