当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical stimulation and electrophysiological monitoring at subcellular resolution reveals differential mechanosensation of neurons within networks
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2024-02-20 , DOI: 10.1038/s41565-024-01609-1
Krishna Chaitanya Kasuba , Alessio Paolo Buccino , Julian Bartram , Benjamin M. Gaub , Felix J. Fauser , Silvia Ronchi , Sreedhar Saseendran Kumar , Sydney Geissler , Michele M. Nava , Andreas Hierlemann , Daniel J. Müller

A growing consensus that the brain is a mechanosensitive organ is driving the need for tools that mechanically stimulate and simultaneously record the electrophysiological response of neurons within neuronal networks. Here we introduce a synchronized combination of atomic force microscopy, high-density microelectrode array and fluorescence microscopy to monitor neuronal networks and to mechanically characterize and stimulate individual neurons at piconewton force sensitivity and nanometre precision while monitoring their electrophysiological activity at subcellular spatial and millisecond temporal resolution. No correlation is found between mechanical stiffness and electrophysiological activity of neuronal compartments. Furthermore, spontaneously active neurons show exceptional functional resilience to static mechanical compression of their soma. However, application of fast transient (500 ms) mechanical stimuli to the neuronal soma can evoke action potentials, which depend on the anchoring of neuronal membrane and actin cytoskeleton. Neurons show higher responsivity, including bursts of action potentials, to slower transient mechanical stimuli (60 s). Moreover, transient and repetitive application of the same compression modulates the neuronal firing rate. Seemingly, neuronal networks can differentiate and respond to specific characteristics of mechanical stimulation. Ultimately, the developed multiparametric tool opens the door to explore manifold nanomechanobiological responses of neuronal systems and new ways of mechanical control.



中文翻译:

亚细胞分辨率的机械刺激和电生理监测揭示了网络内神经元的差异机械感觉

人们日益认识到大脑是一个机械敏感器官,这推动了对能够机械刺激并同时记录神经网络内神经元电生理反应的工具的需求。在这里,我们介绍了原子力显微镜、高密度微电极阵列和荧光显微镜的同步组合,用于监测神经元网络,并以皮牛顿力灵敏度和纳米精度机械表征和刺激单个神经元,同时以亚细胞空间和毫秒时间分辨率监测其电生理活动。神经元区室的机械刚度和电生理活动之间没有发现相关性。此外,自发活动的神经元对其体细胞的静态机械压缩表现出卓越的功能恢复能力。然而,对神经元体施加快速瞬态(~ 500 ms)机械刺激可以激发动作电位,这取决于神经元膜和肌动蛋白细胞骨架的锚定。神经元对较慢的瞬时机械刺激(60 秒)表现出更高的响应度,包括动作电位的爆发。此外,瞬时和重复应用相同的压缩可以调节神经元放电率。表面上,神经网络可以区分机械刺激的特定特征并对其做出反应。最终,开发的多参数工具为探索神经元系统的多种纳米机械生物学反应和机械控制的新方法打开了大门。

更新日期:2024-02-20
down
wechat
bug