当前位置: X-MOL 学术Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compilation and deciphering MoS2’s physical properties: Accurate benchmark DFT simulations and assessment of advanced quantum methods
Chemical Physics ( IF 2.3 ) Pub Date : 2024-02-08 , DOI: 10.1016/j.chemphys.2024.112229
Najeh Rekik , Ibrahim Isah , Norah A.M. Alsaif , Muath Alkadi , Shehu Aminu Yamusa , Ibtihal M. Alsalamah , Amiruddin Shaari , G. Lakshminarayana , Saed Salman , Razif Razali , A. Wahab M.A. Hussein , Umer Farooq , Hira Affan

The effect of the cumulant approximations and commonly electronic structure methods predominantly devoted to studying material properties at the atomic and molecular levels is examined in the case of bulk MoS. The analysis is performed for the investigation of the lattice parameter constants and electronic properties of bulk MoS compounds using various Density-functional theory (DFT) calculation methods, within the context of PBE, LDA+U, PBE+U, PBE+U+V, GW, and HSE06 (Heyd–Scuseria–Ernzerhof 2006) theoretical methods. The calculations focus herein on the hexagonal transition metal dichalcogenides (TMDs) structure, which represents the lowest energy crystalline structures. Interestingly, the comparison of the obtained lattice constant parameters with experimental and theoretical results reveals slight overestimations in the PBE calculations, consistent with previous findings. While the cumulant use of the hybrid-HSE06 functional are seen to improve the accuracy of the lattice parameter constants by reducing the percentage error compared to experimental data, the congregated PBE and U calculations are found, on the contrary, to concisely underestimate the lattice parameters of MoS due to increased electron localization. Thus, incorporating the Hubbard parameter within the context of the PBE approximation reveals minimal impact on the band gap of MoS. Furthermore, we show that non-local hybrid calculations, such as HSE06, showcase great sensitivity on the improved electronic properties for MoX compounds (X = S, Se, Te), leading to a substantial decrease of the band gap errors. Thus, the HSE06 method is revealed to capture the highest energy band gap, providing thereby new means for accurately determining the band gap and probing statistically the obtaining of unique information regarding the critical aspect of the band gap values of TMDs materials research.

中文翻译:

编译和破译MoS2的物理性质:精确的基准DFT模拟和先进量子方法的评估

在块状 MoS2 的情况下,研究了主要致力于在原子和分子水平上研究材料特性的累积量近似和常用电子结构方法的影响。该分析是在 PBE、LDA+U、PBE+U、PBE+U+V 的背景下使用各种密度泛函理论 (DFT) 计算方法研究块状 MoS2 化合物的晶格参数常数和电子性质、GW 和 HSE06 (Heyd–Scuseria–Ernzerhof 2006) 理论方法。本文的计算重点是六方过渡金属二硫属化物 (TMD) 结构,它代表了最低能量的晶体结构。有趣的是,将获得的晶格常数参数与实验和理论结果进行比较,发现 PBE 计算略有高估,这与之前的发现一致。虽然与实验数据相比,混合 HSE06 泛函的累积使用被认为可以通过减少百分比误差来提高晶格参数常数的准确性,但相反,聚合 PBE 和 U 计算被发现会简明地低估晶格参数由于电子局域化的增加,MoS2 的含量增加。因此,将 Hubbard 参数纳入 PBE 近似的范围内表明对 MoS2 带隙的影响最小。此外,我们还表明,非局域混合计算(例如 HSE06)对 MoX 化合物(X = S、Se、Te)的电子性能的改善表现出极大的敏感性,从而导致带隙误差大幅降低。因此,HSE06 方法被揭示为捕获最高能带隙,从而提供了准确确定带隙并以统计方式探索获得有关 TMD 材料研究带隙值关键方面的独特信息的新方法。
更新日期:2024-02-08
down
wechat
bug