当前位置: X-MOL 学术Soil Biol. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alternate wetting-drying had no preferences for rice P uptake but increased microbial P allocation to phospholipids: Evidence from dual 32P and 33P labeling
Soil Biology and Biochemistry ( IF 9.7 ) Pub Date : 2024-02-11 , DOI: 10.1016/j.soilbio.2024.109359
Chaoqun Wang , Tianpeng Li , Michaela A. Dippold , Georg Guggenberger , Yakov Kuzyakov , Callum C. Banfield , Jan Muhr , Maxim Dorodnikov

Alternate wetting-drying (AWD) in rice cultivation controls soil redox conditions and consequently nutrient solubility. Under low redox potential, ferric iron reduction leads to bound phosphate (Fe(III)–P) dissolution, but lack of oxygen retards organic phosphorus (P) mineralization. Microorganisms accelerate P mineralization as the redox potential increases during drying, but it is not known which P source will be preferentially taken up by microorganisms and plants. Using double P labeling, we traced for the first time the P released from inorganic (P) and organic (P) sources into microbial biomass P (MBP), phospholipids, and plants under continuous flooding (CF) and AWD.

中文翻译:

干湿交替对水稻 P 吸收没有偏好,但增加了微生物 P 向磷脂的分配:来自双重 32P 和 33P 标记的证据

水稻种植中的干湿交替(AWD)控制土壤氧化还原条件,从而控制养分溶解度。在低氧化还原电位下,三价铁还原导致结合磷酸盐 (Fe(III)-P) 溶解,但缺氧会阻碍有机磷 (P) 矿化。随着干燥过程中氧化还原电位的增加,微生物加速了磷的矿化,但尚不清楚哪种磷源会优先被微生物和植物吸收。使用双磷标记,我们首次追踪了连续淹水 (CF) 和 AWD 下从无机 (P) 和有机 (P) 来源释放到微生物量磷 (MBP)、磷脂和植物中的磷。
更新日期:2024-02-11
down
wechat
bug