当前位置: X-MOL 学术Egypt. J. Med. Hum. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Identification of a novel ATR-X mutation causative of acquired α-thalassemia in a myelofibrosis patient
Egyptian Journal of Medical Human Genetics Pub Date : 2024-02-28 , DOI: 10.1186/s43042-024-00497-3
Rosa Catapano , Filippo Russo , Marco Rosetti , Giovanni Poletti , Silvia Trombetti , Raffaele Sessa , Tommaso Fasano , Sauro Maoggi , Sante Roperto , Michela Grosso

Dear Editor,

Acquired alpha-thalassemia mental retardation X-linked (ATRX) mutations are associated with the onset of α-thalassemia in several hematological malignancies including myelodysplasia, acute lymphoblastic leukemia, myelofibrosis, essential thrombocythemia, and acute myeloid leukemia (acquired α-thalassemia myelodisplastic syndrome, ATMDS) [1]. The ATRX gene (NM_000489.6) is located at Xq21.1 and encodes a chromatin remodeling protein which contributes to regulate the structure and function of chromatin in centromeric heterochromatin and telomeric domains to control different cellular pathways including DNA damage response and senescence mechanisms [2, 3]. ATRX is also involved in the epigenetic regulation of α-globin genes: loss-of-function mutations in the ATRX gene cause the transcriptional repression of the α-globin gene (HBA), thus resulting in a decreasing production of α-globin chains [4]. In this regard, mutations of the ATRX gene have been reported in association with a rare inherited pathology called X-linked α-thalassemia and mental retardation syndrome (or ATR-X syndrome) characterized by mental retardation, facial and urogenital abnormalities along with an α-thalassemia trait with elevated levels of β-globin or γ-globin tetramers (HbH or Barts' hemoglobin), the amount of which is directly related to the severity of the α-globin chain deficiency [5].

Here we report a novel single-nucleotide variant (SNV) in the ATRX gene, found by Next-Generation Sequencing (NGS) analysis in a 77-year-old Italian man previously healthy who had been hospitalized for myelofibrosis and was referred to our Centre to investigate the possible genetic cause of an acquired form of α-thalassemia with elevated levels of HbH. The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the University of Naples Federico II (project approval number 443/21). Genomic DNA was extracted using the Nucleon BACC3 kit (GE Healthcare, Life Sciences, Chicago, IL, USA) and analyzed by a customized NGS gene panel recently developed by our group to identify acquired or inherited mutations associated with thalassemic disorders. The DNA libraries were prepared with the SureSelectXT HS Target Enrichment System kit (Agilent Technologies, Santa Clara, CA, USA) after enzymatic fragmentation and according to the manufacturer’s protocol. Library quality and quantity were checked with the TapeStation system (Agilent Technologies) and Qubit dsDNA High Sensitivity assay kit on Qubit Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), respectively. Libraries were sequenced with MiSeq Reagent Kit v2 (300-cycles) by loading a concentrated pool (9 pM) and 1% Phix on a MiSeq Illumina® instrument (Illumina; San Diego, CA, USA). To exclude any kind of contamination, a blank negative control was included, and it followed all procedure’s steps, from DNA extraction to sequencing. Data analysis was performed using Alissa Report v1.1.6–2023-03 and Alissa Interpret v5.4.2 software (Agilent Technologies) and revealed the presence of a T > G transition at codon 520 in exon 7 of the ATRX gene (c.520T > G) with a variant allele frequency of 89.9% (179/199 variant coverage) which deviates from the expected values for germline mutations, thereby in agreement with the acquired origin of the variant. This SNV leads to a missense p.Cys174Gly mutation in the PHD-like domain, a hot-spot region for ATMDS defects [1, 6]. The mutation was confirmed by Sanger sequencing (Fig. 1A). NGS and MLPA analysis also excluded the presence of point mutations or large deletions in the α-globin gene cluster that are responsible of inherited α-thalassemia (Fig. 1B) [7].

Fig. 1
figure 1

Analysis of the ATRX:c.520T > G variant. A Sanger sequencing with forward and reverse primers to confirm the presence of the novel mutation previously identified in the proband by NGS. The arrow indicates the mutated base; B MLPA analysis showing the absence of α-thalassemia deletions in the α-globin cluster, as previously described [7]; C Base conservation scores of 18 bases on the X chromosome’s negative strand of exon 7 of ATRX (and the respective amino acid encoded). Below each base, the PhyloP100way score from the VarSome database is presented in diagram form and color-coded. The PhyloP100way score calculation is based on multiple alignments of 99 sequences of genomes from different vertebrates compared to the human genome. It represents the conservation level of a specific nucleotide in the human genome: the higher the score, the more that nucleotide is conserved (red = highly conservated; yellow = moderately conservated; light green = mildly conservated; dark green = very mildly conservated). The asterisk indicates the position of the ATRX:c.520T > G variant (p.Cys174Gly) colored with red diagonal stripes

Full size image

To our best knowledge and according to GnomAD exome, GnomAD genome, and ClinVar databases, this SNV is an unreported variant in the ATRX gene. Thirteen out of 18 in-silico prediction tools (CADD, Polyphen2 HVAR, Polyphen2 HDIV, FATHMM, M-CAP, MutPred, MVP, FATHMM-MKL, LRT, PrimateAI, PROVEAN, SIFT, SIFT4G) supported the possible pathogenicity of this SNV, whereas other five tools (BLOSUM, DANN, DEOGEN2, LIST-S2, MutationTaster) classified it as of uncertain significance (Table 1). In addition, six different meta-scores for in-silico pathogenicity assessment determined a very strong, strong, or moderate pathogenic prediction, basing on multiple tools as reported in Table 1. Furthermore, an analysis of base conservation scores on 99 vertebrate genome sequences aligned to the human genome (represented by PhyloP100way scores provided by the VarSome platform, https://varsome.com/about/resources/acmg-implementation) revealed that c.520T is a highly conserved nucleotide in the human genome, as represented in Fig. 1C. Indeed, this mutation falls in the PHD-like region of the protein, a functional domain where several other ATMDS mutations have been identified so far [8]. Based on this information, we classified this mutation as potentially pathogenic. In fact, according to the criteria of the American College of Medical Genetics and Genomics (ACMG), the detected SNV met three criteria which allow to establish its pathogenicity [9]: first, there are several computational systems supporting a possible deleterious effect of this mutation (PP1 rule); secondly, this mutation is located in a mutational hot-spot genomic area (PM1 rule); finally, no frequency data for this sequence variation are reported in the main genetic databases, such as the Exome Sequencing Project, 1000 Genome Project, or the Exome Aggregation Consortium (PM2 rule).

Table 1 Pathogenicity prediction meta-score
Full size table

In conclusion, here we report a novel ATRX mutation in a patient with myelofibrosis in which the onset of HbH disease can be explained by impaired ATRX functions leading to altered expression of the α-globin genes. This report contributes to better define the ATRX gene mutational spectrum, with the purpose of improving genetic screening and diagnosis of rare diseases.

The data supporting the findings of this study are available from the corresponding author upon request.

ATRX:

Alpha-thalassemia mental retardation X-linked

ATMDS:

Acquired α-thalassemia myelodisplastic syndrome

HBA:

α-globin gene

SNV:

Novel single-nucleotide variant

NGS:

Next-generation sequencing

MLPA:

Multiplex ligation-dependent probe amplification

ACMG:

American College of Medical Genetics and Genomics

  1. Steensma DP, Gibbons RJ, Higgs DR (2005) Acquired α-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies. Blood 105:443–452. https://doi.org/10.1182/blood-2004-07-2792

    Article CAS PubMed Google Scholar

  2. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. CP Bioinform 54:1–30. https://doi.org/10.1002/cpbi.5

    Article Google Scholar

  3. Aguilera P, López-Contreras AJ (2023) ATRX, a guardian of chromatin. Trends Genet 39:505–519. https://doi.org/10.1016/j.tig.2023.02.009

    Article CAS PubMed Google Scholar

  4. Ratnakumar K, Duarte LF, LeRoy G, Hasson D, Smeets D, Vardabasso C et al (2012) ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression. Genes Dev 26:433–438. https://doi.org/10.1101/gad.179416.111

    Article CAS PubMed PubMed Central Google Scholar

  5. Gibbons RJ, Higgs DR (2000) Molecular-clinical spectrum of the ATR-X syndrome. Am J Med Genet 97:204–212. https://doi.org/10.1002/1096-8628(200023)97:3%3c204::AID-AJMG1038%3e3.0.CO;2-X

    Article CAS PubMed Google Scholar

  6. Steensma DP, Higgs DR, Fisher CA, Gibbons RJ (2004) Acquired somatic ATRX mutations in myelodysplastic syndrome associated with α thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. Blood 103:2019–2026. https://doi.org/10.1182/blood-2003-09-3360

    Article CAS PubMed Google Scholar

  7. Sessa R, Puzone S, Ammirabile M, Piscopo C, Pagano L, Colucci S et al (2010) Identification and molecular characterization of the-CAMPANIA deletion, a novel α0-thalassemic defect, in two unrelated Italian families. Am J Hematol 85:143–144. https://doi.org/10.1002/ajh.21591

    Article PubMed Google Scholar

  8. Argentaro A, Yang J-C, Chapman L, Kowalczyk MS, Gibbons RJ, Higgs DR et al (2007) Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proc Natl Acad Sci USA 104:11939–11944. https://doi.org/10.1073/pnas.0704057104

    Article ADS CAS PubMed PubMed Central Google Scholar

  9. Rehder C, Bean LJH, Bick D, Chao E, Chung W, Das S et al (2021) Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and genomics (ACMG). Genet Med 23:1399–1415. https://doi.org/10.1038/s41436-021-01139-4

    Article PubMed Google Scholar

  10. Borges P, Pasqualim G, Matte U (2021) Which is the best in silico program for the missense variations in IDUA gene? A comparison of 33 programs plus a conservation score and evaluation of 586 missense variants. Front Mol Biosci 8:752797. https://doi.org/10.3389/fmolb.2021.752797

    Article CAS PubMed PubMed Central Google Scholar

  11. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R et al (2019) VarSome: the human genomic variant search engine. Bioinformatics 35:1978–1980. https://doi.org/10.1093/bioinformatics/bty897

    Article CAS PubMed Google Scholar

  12. Garcia FADO, de Andrade ES, Palmero EI (2022) Insights on variant analysis in silico tools for pathogenicity prediction. Front Genet 13:1010327. https://doi.org/10.3389/fgene.2022.1010327

    Article CAS PubMed PubMed Central Google Scholar

Download references

Not applicable.

Not applicable.

Authors and Affiliations

  1. Ceinge-Biotecnologie Avanzate “Franco Salvatore”, 80131, Naples, Italy

    Rosa Catapano, Filippo Russo & Michela Grosso

  2. Clinical Pathology Unit, Hub Laboratory, AUSL Romagna, 47522, Cesena, Italy

    Marco Rosetti, Giovanni Poletti & Tommaso Fasano

  3. Sebia Italia Srl, 50012, Bagno a Ripoli, FI, Italy

    Sauro Maoggi

  4. Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137, Naples, Italy

    Silvia Trombetti & Sante Roperto

  5. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy

    Rosa Catapano, Filippo Russo, Silvia Trombetti, Raffaele Sessa & Michela Grosso

Authors
  1. Rosa CatapanoView author publications

    You can also search for this author in PubMed Google Scholar

  2. Filippo RussoView author publications

    You can also search for this author in PubMed Google Scholar

  3. Marco RosettiView author publications

    You can also search for this author in PubMed Google Scholar

  4. Giovanni PolettiView author publications

    You can also search for this author in PubMed Google Scholar

  5. Silvia TrombettiView author publications

    You can also search for this author in PubMed Google Scholar

  6. Raffaele SessaView author publications

    You can also search for this author in PubMed Google Scholar

  7. Tommaso FasanoView author publications

    You can also search for this author in PubMed Google Scholar

  8. Sauro MaoggiView author publications

    You can also search for this author in PubMed Google Scholar

  9. Sante RopertoView author publications

    You can also search for this author in PubMed Google Scholar

  10. Michela GrossoView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

Conceptualization was performed by MG; methodology by RC and RS; software by FR; validation by RC, RS, and ST; investigation by RC, RS, and ST; data curation by RC and FR; writing—original draft preparation by RC and FR; writing—review and editing by MG, MR, GP, TF, and SM; visualization by SM and SR; supervision by MG. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Michela Grosso.

Ethics approval and consent to participate

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Ethics Committee of University of Naples Federico II (protocol code 443/21; date of approval: 24/02/2022).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catapano, R., Russo, F., Rosetti, M. et al. Identification of a novel ATR-X mutation causative of acquired α-thalassemia in a myelofibrosis patient. Egypt J Med Hum Genet 25, 25 (2024). https://doi.org/10.1186/s43042-024-00497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s43042-024-00497-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:

鉴定导致骨髓纤维化患者获得性 α-地中海贫血的新型 ATR-X 突变

亲爱的编辑,

获得性 α 地中海贫血精神发育迟滞 X 连锁 (ATRX) 突变与多种血液系统恶性肿瘤中 α 地中海贫血的发病相关,包括骨髓增生异常、急性淋巴细胞白血病、骨髓纤维化、原发性血小板增多症和急性髓性白血病(获得性 α 地中海贫血骨髓增生异常综合征、空中交通管理系统)[1]。ATRX 基因 (NM_000489.6) 位于 Xq21.1,编码染色质重塑蛋白,有助于调节着丝粒异染色质和端粒结构域中染色质的结构和功能,以控制不同的细胞途径,包括 DNA 损伤反应和衰老机制 [2 ,3]。ATRX 还参与 α-珠蛋白基因的表观遗传调控:ATRX 基因的功能丧失突变会导致 α-珠蛋白基因 (HBA) 的转录抑制,从而导致 α-珠蛋白链的产量减少。 4]。在这方面,据报道 ATRX 基因的突变与一种罕见的遗传性疾病有关,称为 X 连锁 α 地中海贫血和智力低下综合征(或 ATR-X 综合征),其特征是智力低下、面部和泌尿生殖系统异常以及 α -β-珠蛋白或γ-珠蛋白四聚体(HbH 或 Barts 血红蛋白)水平升高的地中海贫血特征,其数量与 α-珠蛋白链缺陷的严重程度直接相关[5]。

在这里,我们报告了ATRX基因中的一个新的单核苷酸变异 (SNV) ,通过下一代测序 (NGS) 分析在一名先前健康的 77 岁意大利男子中发现,他因骨髓纤维化住院并被转诊到我们的中心调查 HbH 水平升高的获得性 α-地中海贫血的可能遗传原因。该研究是根据赫尔辛基宣言进行的,并得到那不勒斯费德里科二世大学伦理委员会的批准(项目批准号443/21)。使用 Nucleon BACC3 试剂盒(GE Healthcare,生命科学,芝加哥,伊利诺伊州,美国)提取基因组 DNA,并通过我们小组最近开发的定制 NGS 基因组进行分析,以识别与地中海贫血相关的获得性或遗传性突变。DNA 文库是在酶裂解后使用 SureSelect XT HS靶标富集系统试剂盒(Agilent Technologies,Santa Clara,CA,USA)根据制造商的方案制备的。分别使用 TapeStation 系统 (Agilent Technologies) 和 Qubit 荧光计 (Thermo Fisher Scientific, Waltham, MA, USA) 上的 Qubit dsDNA 高灵敏度检测试剂盒检查文库质量和数量。通过在 MiSeq Illumina® 仪器(Illumina;圣地亚哥,加利福尼亚州,美国)上加载浓缩池 (9 pM) 和 1% Phix,使用 MiSeq Reagent Kit v2(300 个循环)对文库进行测序。为了排除任何类型的污染,添加了空白阴性对照,并遵循从 DNA 提取到测序的所有程序步骤。使用 Alissa Report v1.1.6–2023-03 和 Alissa Interpret v5.4.2 软件 (Agilent Technologies) 进行数据分析,结果显示ATRX基因外显子 7 的密码子 520 处存在 T > G 转变(c.520T > G) 变异等位基因频率为 89.9%(179/199 变异覆盖率),这偏离了种系突变的预期值,因此与变异的获得性起源一致。该 SNV 导致 PHD 样结构域中出现错义 p.Cys174Gly 突变,该结构域是 ATMDS 缺陷的热点区域 [1, 6]。该突变通过桑格测序得到证实(图1A)。NGS 和 MLPA 分析还排除了 α-珠蛋白基因簇中导致遗传性 α-地中海贫血的点突变或大缺失的存在(图 1B)[7]。

图。1
图1

ATRX 分析:c.520T > G 变体。使用正向和反向引物进行桑格测序,以确认先前通过 NGS 在先证者中鉴定出的新突变的存在。箭头表示突变的碱基;B MLPA 分析显示 α-珠蛋白簇中不存在 α-地中海贫血缺失,如先前所述 [7];C ATRX 外显子 7 的 X 染色体负链上 18 个碱基的碱基保守分数(以及各自编码的氨基酸)。在每个碱基下方,来自 VarSome 数据库的 PhyloP100way 分数以图表形式呈现并用颜色编码。PhyloP100way 分数计算基于来自不同脊椎动物的 99 个基因组序列与人类基因组的多重比对。它代表了人类基因组中特定核苷酸的保守程度:得分越高,该核苷酸越保守(红色=高度保守;黄色=中度保守;浅绿色=轻度保守;深绿色=非常轻度保守)。星号表示 ATRX:c.520T > G 变体 (p.Cys174Gly) 的位置,红色斜条纹着色

全尺寸图像

据我们所知,根据 GnomAD 外显子组、GnomAD 基因组和 ClinVar 数据库,该 SNV 是ATRX基因中未报告的变体。18 个计算机预测工具(CADD、Polyphen2 HVAR、Polyphen2 HDIV、FATHMM、M-CAP、MutPred、MVP、FATHMM-MKL、LRT、PrimateAI、PROVEAN、SIFT、SIFT4G)中的 13 个支持该 SNV 的可能致病性,而其他五个工具(BLOSUM、DANN、DEOGEN2、LIST-S2、MutationTaster)将其分类为意义不确定(表 1)。此外,根据表 1 中报告的多种工具,用于计算机致病性评估的六种不同元评分确定了非常强、强或中等致病性预测。此外,对 99 个脊椎动物基因组序列的碱基保守评分进行了分析对人类基因组(由 VarSome 平台提供的 PhyloP100way 分数表示,https://varsome.com/about/resources/acmg-implementation)揭示,c.520T 是人类基因组中高度保守的核苷酸,如图所示.1C. 事实上,这种突变属于蛋白质的 PHD 样区域,这是一个功能域,迄今为止已经发现了其他几个 ATMDS 突变 [8]。根据这些信息,我们将这种突变归类为潜在致病性。事实上,根据美国医学遗传学和基因组学学院 (ACMG) 的标准,检测到的 SNV 满足三个标准,可以确定其致病性 [9]:首先,有几个计算系统支持这种可能的有害影响。突变(PP1规则);其次,该突变位于突变热点基因组区域(PM1规则);最后,主要遗传数据库(例如外显子组测序计划、千人基因组计划或外显子组聚合联盟(PM2 规则))中没有报告此序列变异的频率数据。

表1 致病性预测元评分
全尺寸桌子

总之,我们在这里报告了骨髓纤维化患者的一种新的 ATRX 突变,其中 HbH 疾病的发作可以通过 ATRX 功能受损导致 α-珠蛋白基因表达改变来解释。该报告有助于更好地定义ATRX基因突变谱,旨在改善罕见疾病的基因筛查和诊断。

支持本研究结果的数据可根据要求向通讯作者提供。

ATRX:

X连锁α-地中海贫血精神发育迟滞

空中交通管理系统:

获得性α-地中海贫血骨髓增生异常综合征

主机总线适配器:

α珠蛋白基因

序列号:

新型单核苷酸变体

NGS:

新一代测序

MLPA:

多重连接依赖性探针扩增

ACMG:

美国医学遗传学与基因组学院

  1. Steensma DP、Gibbons RJ、Higgs DR (2005) 获得性 α-地中海贫血与骨髓增生异常综合征和其他血液恶性肿瘤相关。血 105:443-452。https://doi.org/10.1182/blood-2004-07-2792

    文章 CAS PubMed 谷歌学术

  2. Stelzer G、Rosen N、Plaschkes I、Zimmerman S、Twik M、Fishilevich S 等人 (2016) GeneCards 套件:从基因数据挖掘到疾病基因组序列分析。CP 生物信息 54:1-30。https://doi.org/10.1002/cpbi.5

    文章谷歌学术

  3. Aguilera P, López-Contreras AJ (2023) ATRX,染色质的守护者。趋势基因三十九:505-519。https://doi.org/10.1016/j.tig.2023.02.009

    文章 CAS PubMed 谷歌学术

  4. Ratnakumar K、Duarte LF、LeRoy G、Hasson D、Smeets D、Vardabasso C 等人 (2012) ATRX 介导的组蛋白变体 MacroH2A1 的染色质关联调节 α-珠蛋白表达。创世记 26:433-438。https://doi.org/10.1101/gad.179416.111

    文章 CAS PubMed PubMed Central Google Scholar

  5. Gibbons RJ, Higgs DR (2000) ATR-X 综合征的分子临床谱。《美国医学遗传学杂志》97:204-212。https://doi.org/10.1002/1096-8628(200023)97:3%3c204::AID-AJMG1038%3e3.0.CO;2-X

    文章 CAS PubMed 谷歌学术

  6. Steensma DP、Higgs DR、Fisher CA、Gibbons RJ (2004) 与 α 地中海贫血相关的骨髓增生异常综合征 (ATMDS) 中获得性体细胞 ATRX 突变比种系 ATRX 突变表现出更严重的血液学表型。血 103:2019–2026。https://doi.org/10.1182/blood-2003-09-3360

    文章 CAS PubMed 谷歌学术

  7. Sessa R、Puzone S、Ammirabile M、Piscopo C、Pagano L、Colucci S 等人 (2010)两个不相关的意大利家族中-CAMPANIA 缺失(一种新的 α 0 -地中海贫血缺陷)的鉴定和分子特征。《Am J Hematol》85:143–144。https://doi.org/10.1002/ajh.21591

    文章 PubMed 谷歌学术

  8. Argentaro A, Yang JC, Chapman L, Kowalczyk MS, Gibbons RJ, Higgs DR et al (2007) 染色质相关蛋白 ATRX 的 ATRX-DNMT3-DNMT3L (ADD) 结构域中致病突变的结构后果。美国国家科学院院刊 104:11939–11944。https://doi.org/10.1073/pnas.0704057104

    文章 ADS CAS PubMed PubMed Central Google Scholar

  9. Rehder C, Bean LJH, Bick D, Chao E, Chung W, Das S et al (2021) 临床实验室体质变异的下一代测序,2021 年修订版:美国医学遗传学和基因组学学院的技术标准 ( ACMG)。基因医学二十三:1399-1415。https://doi.org/10.1038/s41436-021-01139-4

    文章 PubMed 谷歌学术

  10. Borges P、Pasqualim G、Matte U (2021) 对于 IDUA 基因的错义变异,哪个是最好的计算机程序?33 个程序的比较以及 586 个错义变体的保护评分和评估。摩尔生物科学前沿 8:752797。https://doi.org/10.3389/fmolb.2021.752797

    文章 CAS PubMed PubMed Central Google Scholar

  11. Kopanos C、Tsiolkas V、Kouris A、Chapple CE、Albarca Aguilera M、Meyer R 等人 (2019) VarSome:人类基因组变异搜索引擎。生物信息学 35:1978–1980。https://doi.org/10.1093/bioinformatics/bty897

    文章 CAS PubMed 谷歌学术

  12. Garcia FADO、de Andrade ES、Palmero EI (2022) 关于用于致病性预测的计算机工具中的变异分析的见解。基因前面 13:1010327。https://doi.org/10.3389/fgene.2022.1010327

    文章 CAS PubMed PubMed Central Google Scholar

下载参考资料

不适用。

不适用。

作者和单位

  1. Ceinge-Biotecnologie Avanzate“Franco Salvatore”,80131,那不勒斯,意大利

    罗莎·卡塔帕诺、菲利波·罗素和米凯拉·格罗索

  2. 临床病理科,中心实验室,AUSL Romagna,47522,切塞纳,意大利

    马可·罗塞蒂、乔瓦尼·波莱蒂和托马索·法萨诺

  3. Sebia Italia Srl, 50012, 巴尼奥阿里波利, FI, 意大利

    绍罗·毛吉

  4. 那不勒斯费德里科二世大学兽医和动物生产系,80137,那不勒斯,意大利

    西尔维娅·特罗姆贝蒂和桑特·罗佩托

  5. 分子医学和医学生物技术系,那不勒斯大学费德里科二世,80131,那不勒斯,意大利

    罗莎·卡塔帕诺、菲利波·罗素、西尔维娅·特罗姆贝蒂、拉斐尔·塞萨和米凯拉·格罗索

作者
  1. 罗莎·卡塔帕诺查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  2. Filippo Russo查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  3. Marco Rosetti查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  4. 乔瓦尼·波莱蒂查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  5. Silvia Trombetti查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  6. Raffaele Sessa查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  7. 托马索·法萨诺查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  8. Sauro Maoggi查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  9. Sante Roperto查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  10. 米凯拉·格罗索查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

贡献

概念化由 MG 进行;RC 和 RS 方法;软件由 FR 提供;通过 RC、RS 和 ST 进行验证;通过 RC、RS 和 ST 进行调查;由 RC 和 FR 进行数据管理;写作——由 RC 和 FR 准备初稿;写作—由 MG、MR、GP、TF 和 SM 审阅和编辑;通过 SM 和 SR 进行可视化;由MG监督。所有作者均已阅读并同意稿件的出版版本。

通讯作者

米凯拉·格罗索的通讯。

道德批准并同意参与

该研究是根据赫尔辛基宣言的指导方针进行的,并得到那不勒斯费德里科二世大学机构伦理委员会的批准(方案代码443/21;批准日期:24/02/2022)。

同意发表

不适用。

利益争夺

作者声明他们没有利益冲突。

出版商备注

施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。

开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的出处中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。

转载和许可

检查更新。 通过 CrossMark 验证货币和真实性

引用这篇文章

卡塔帕诺,R.,鲁索,F.,罗塞蒂,M.等人。鉴定出导致骨髓纤维化患者获得性 α-地中海贫血的新型 ATR-X 突变。埃及 J Med Hum Genet 25 , 25 (2024)。https://doi.org/10.1186/s43042-024-00497-3

下载引文

  • 已收到

  • 已接受

  • 发表

  • DOI https://doi.org/10.1186/s43042-024-00497-3

分享此文章

您与之分享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

更新日期:2024-02-28
down
wechat
bug