当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulation of the Passive Radiative Cooling Fabric Based on Fiber‐Yarn‐Texture‐Doping Particle 3D Model
Advanced Theory and Simulations ( IF 3.3 ) Pub Date : 2024-03-03 , DOI: 10.1002/adts.202301035
Tianye Niu 1 , Hongyu Guo 1 , Jianyong Yu 1, 2 , Xueli Wang 1, 2
Affiliation  

Developing passive radiative cooling fabrics could effectively prevent the harmful consequences of global warming, including heat stress and other related illnesses. By enhancing the material compositions and optimizing the structural parameters of conventional fabrics, the creation of radiative cooling fabric that offers both comfort and durability holds great potential. However, the researched simulation models are over‐simplistic, rendering it challenging to precisely portray the fine fabric's structure with the low accuracy of optical properties prediction. In this work, a high‐fidelity model is developed for fabric structure, which allows for precise control of structural parameters of fiber, yarn, texture, and doping particles. Subsequently, by utilizing the FDTD Solutions software, the optical performance of the fabric model is successfully addressed. Furthermore, the coupled heat transfer equation is employed to determine the actual cooling effect of the fabric. It is observed that doping 1% TiO2 nanoparticles and increasing the number of fibers significantly enhances the solar reflectivity, resulting in a cooling effect of approximately 2 °C. To maintain the skin temperature of 34°C, the additional cooling energy required would be reduced by 36 W m−2. These findings are expected to provide crucial guidance and predictions for the development of passive radiative cooling fabrics.

中文翻译:

基于纤维-纱线-纹理-掺杂粒子3D模型的被动辐射冷却织物数值模拟

开发被动辐射冷却织物可以有效防止全球变暖的有害后果,包括热应激和其他相关疾病。通过增强材料成分并优化传统织物的结构参数,创造兼具舒适性和耐用性的辐射冷却织物具有巨大的潜力。然而,所研究的模拟模型过于简单,使得在光学性能预测精度较低的情况下精确描绘精细织物的结构具有挑战性。在这项工作中,开发了一个用于织物结构的高保真模型,可以精确控制纤维、纱线、纹理和掺杂颗粒的结构参数。随后,通过利用 FDTD Solutions 软件,成功解决了织物模型的光学性能问题。此外,耦合传热方程用于确定织物的实际冷却效果。据观察,掺杂 1% TiO22纳米粒子和增加纤维数量显着增强了太阳反射率,从而产生约 2°C 的冷却效果。为了维持 34°C 的皮肤温度,所需的额外冷却能量将减少 36 W·m−2。这些发现预计将为被动辐射冷却织物的开发提供重要的指导和预测。
更新日期:2024-03-03
down
wechat
bug