当前位置: X-MOL 学术Conserv. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Erratum to Effects of human depopulation and warming climate on bird populations in Japan
Conservation Biology ( IF 6.3 ) Pub Date : 2024-03-03 , DOI: 10.1111/cobi.14252


Katayama, N., Fujita, T., Ueta, M., Morelli, F., & Amano, T. (2023). Effects of human depopulation and warming climate on bird populations in Japan. Conservation Biology: https://doi.org/10.1111/cobi.14175.

The median and range of annual mean temperatures in the breeding range of each species should have been used as measures of temperature niche position and breadth, respectively. The variables that were used by mistake as the temperature niche position and breadth were the range of annual mean temperatures in the breeding range of each species and another temperature niche data, respectively, that were not the focus. After correcting for these data, a positive correlation between the temperature niche position and breadth (r = 0.47) was found. In a reanalysis with the correct explanatory variables, the temperature niche position was not significant (p = 0.138) but the temperature niche breadth was (p = 0.041 shown as the temperature niche position in Table 2), and bird species had a narrower temperature niche breadth that declined more than the original results showed. These corrections warranted changes to Figure 2b.

Details are in the caption following the image
FIGURE 2b
Open in figure viewerPowerPoint
Relationship between estimated population trend for 47 species of common breeding birds in Japan by temperature niche breadth (point size, proportional to precision of the population trend; heavy black line, marginal effect; thin lines, 95% CIs).

Related to this error, the warm-adapted species and cold-adapted species were actually the species with broad and narrow temperature niche breadth, respectively. Relative to this correction revisions to Figure 3e and f and Table 3 have been made.

Details are in the caption following the image
FIGURE 3e,f
Open in figure viewerPowerPoint
Multispecies indicators (MSIs) of bird population trends in Japan for (e) broad temperature niche species (n = 24) and (f) narrow temperature niche species (n = 23) (blue green, moderate increasing trends; vermillion, moderate deceasing trends; light gray, population trends of individual species; vertical line, population trends before and after 2015 not significantly different [p < 0.05]). In 2009 indices were set to 100 and their SEs to 0. A vertical line indicates that.
TABLE 3. Mean difference in the multispecies indicators (MSIs) between each combination of factor levels based on Monte Carlo procedures (1000 iterations from the MSI tool in Soldaat et al. [2017]).
Comparison of multispecies indicators Mean differencea SE p
Overall trend (Figure 3)
forest specialists versus forest generalistsb 0.025 0.005 <0.001
forest specialists versus open-habitat specialistsb 0.035 0.007 <0.001
forest generalists versus open-habitat specialists 0.011 0.007 0.119
broad versus narrow temperature niche species 0.005 0.004 0.261
Before versus after 2015 (Figure 3)
all speciesb −0.037 0.01 <0.001
forest specialistsb −0.031 0.015 0.048
forest generalistsb −0.028 0.012 0.023
open-habitat specialistsb −0.08 0.026 0.002
broad temperature niche speciesb −0.025 0.011 0.019
narrow temperature niche speciesb −0.048 0.015 0.001
Abandoned versus nonabandoned sites (Figure 4)
forest generalists −0.015 0.009 0.099
open-habitat specialists −0.021 0.019 0.273
Before versus after 2015 (Figure 4)
forest generalists at abandoned sites −0.023 0.033 0.493
forest generalists at nonabandoned sites −0.02 0.027 0.467
open-habitat specialists at abandoned sites −0.043 0.074 0.559
open-habitat specialists at nonabandoned sitesb −0.126 0.05 0.011
Managed versus unmanaged sites (Figure 5)
forest generalists −0.02 0.011 0.056
open-habitat specialists 0.012 0.021 0.558
Before versus after 2015 (Figure 5)
forest generalists at unmanaged sites 0.003 0.041 0.938
forest generalists at managed sitesb −0.054 0.028 0.05
open-habitat specialists at unmanaged sites −0.088 0.077 0.252
open-habitat specialists at managed sites −0.073 0.046 0.113
  • a Mean difference in multiplicative trends.
  • b Significant difference.

Overall, these modifications do not change our conclusion that human depopulation and climate warming affect bird population trends in Japan. However, these results do not support our prediction that warm-adapted species would show more positive trends than cold-adapted species (Figure 1). Instead, the positive relationship between population trends and temperature niche breadth suggests that species with narrower temperature niche breadth are at greater risk under climate change than species with broader temperature niche breadth. In Japan bird abundance in warmer areas at the southern end of their distribution range tend to decline, and equivalent population increases do not occur in cooler areas at the northern end of their distribution range and at higher elevations (Y. Yamaura, 2024, personal communication). These results indicate that species with narrow temperature niche breadth might be less able to successfully change their spatial distributions in response to climate warming.



中文翻译:

人类减少和气候变暖对日本鸟类种群影响的勘误表

Katayama, N.、Fujita, T.、Ueta, M.、Morelli, F. 和 Amano, T. (2023)。人类减少和气候变暖对日本鸟类种群的影响。保护生物学:https://doi.org/10.1111/cobi.14175。

应分别使用每个物种繁殖范围内年平均温度的中值和范围作为温度生态位位置和宽度的度量。被错误地用作温度生态位位置和宽度的变量分别是每个物种繁殖范围内的年平均温度范围和另一个温度生态位数据,这不是重点。对这些数据进行校正后,发现温度生态位位置和宽度之间呈正相关(r = 0.47)。在使用正确解释变量的重新分析中,温度生态位位置不显着(p = 0.138),但温度生态位宽度(p = 0.041显示为表2中的温度生态位位置),并且鸟类的温度生态位较窄下降的广度比最初的结果显示的要多。这些更正需要对图 2b 进行更改。

详细信息位于图片后面的标题中
图2b
在图查看器中打开微软幻灯片软件
日本 47 种常见繁殖鸟类的估计种群趋势与温度生态位宽度之间的关系(点大小,与种群趋势精度成正比;粗黑线,边际效应;细线,95% CI)。

与这个错误相关的是,适应温暖的物种和适应寒冷的物种实际上分别是具有宽和窄温度生态位宽度的物种。相对于此修正,对图 3e 和 f 以及表 3 进行了修订。

详细信息位于图片后面的标题中
图3e、f
在图查看器中打开微软幻灯片软件
日本鸟类种群趋势的多物种指标 (MSI)(e)宽温生态位物种(n = 24)和(f)窄温生态位物种(n = 23)(蓝绿色,适度增加趋势;朱红色,适度下降趋势;浅灰色,单个物种的种群趋势;垂直线,2015年前后的种群趋势没有显着差异[ p < 0.05])。 2009 年,指数设置为 100,SE 为 0。垂直线表示这一点。
表 3.基于蒙特卡罗程序的每个因子水平组合之间的多物种指标 (MSI) 平均差异(来自 Soldaat 等人 [2017] 中的 MSI 工具的 1000 次迭代)。
多物种指标比较 平均差a 东南欧 p
总体趋势(图3)
森林专家与森林通才b 0.025 0.005 <0.001
森林专家与开放栖息地专家b 0.035 0.007 <0.001
森林通才与开放栖息地专家 0.011 0.007 0.119
宽温生态位物种与窄温生态位物种 0.005 0.004 0.261
2015年之前与2015年之后(图3)
所有物种b −0.037 0.01 <0.001
森林专家b −0.031 0.015 0.048
森林通才b −0.028 0.012 0.023
开放栖息地专家b −0.08 0.026 0.002
宽温生态位物种b −0.025 0.011 0.019
窄温生态位物种b −0.048 0.015 0.001
废弃场地与非废弃场地(图 4)
森林通才 −0.015 0.009 0.099
开放栖息地专家 −0.021 0.019 0.273
2015年之前与2015年之后(图4)
废弃地点的森林通才 −0.023 0.033 0.493
非废弃地点的森林通才 −0.02 0.027 0.467
废弃地点的开放栖息地专家 −0.043 0.074 0.559
非废弃地点的开放栖息地专家b −0.126 0.05 0.011
托管站点与非托管站点(图 5)
森林通才 −0.02 0.011 0.056
开放栖息地专家 0.012 0.021 0.558
2015年之前与2015年之后(图5)
非管理地点的森林通才 0.003 0.041 0.938
管理地点的森林通才b −0.054 0.028 0.05
非管理场所的开放栖息地专家 −0.088 0.077 0.252
管理地点的开放栖息地专家 −0.073 0.046 0.113
  • a 乘法趋势的平均差。
  • b 显着差异。

总体而言,这些修改并没有改变我们的结论,即人类数量减少和气候变暖影响日本鸟类数量趋势。然而,这些结果并不支持我们的预测,即适应温暖的物种将比适应寒冷的物种表现出更积极的趋势(图 1)。相反,种群趋势与温度生态位宽度之间的正相关关系表明,温度生态位宽度较窄的物种在气候变化下比温度生态位宽度较宽的物种面临更大的风险。在日本,分布范围南端较温暖地区的鸟类丰度往往会下降,而分布范围北端较冷地区和海拔较高的地区则不会出现相应的种群数量增加(Y. Yamaura,2024 年,个人通讯) )。这些结果表明,温度生态位宽度窄的物种可能不太能够成功地改变其空间分布以应对气候变暖。

更新日期:2024-03-03
down
wechat
bug