当前位置: X-MOL 学术Biomater. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodegradable and 3D printable lysine functionalized polycaprolactone scaffolds for tissue engineering applications
Biomaterials Advances ( IF 7.9 ) Pub Date : 2024-02-28 , DOI: 10.1016/j.bioadv.2024.213816
Sonali S. Naik , Arun Torris , Namita R. Choudhury , Naba K. Dutta , Kiran Sukumaran Nair

Tissue engineering (TE) has sparked interest in creating scaffolds with customizable properties and functional bioactive sites. However, due to limitations in medical practices and manufacturing technologies, it is challenging to replicate complex porous frameworks with appropriate architectures and bioactivity in vitro. To address these challenges, herein, we present a green approach that involves the amino acid (-lysine) initiated polymerization of ɛ-caprolactone (CL) to produce modified polycaprolactone (PCL) with favorable active sites for TE applications. Further, to better understand the effect of morphology and porosity on cell attachment and proliferation, scaffolds of different geometries with uniform and interconnected pores are designed and fabricated, and their properties are evaluated in comparison with commercial PCL. The scaffold morphology and complex internal micro-architecture are imaged by micro-computed tomography (micro-CT), revealing pore size in the range of ~300–900 μm and porosity ranging from 30 to 70 %, while based on the geometry of scaffolds the compressive strength varied from 143 ± 19 to 214 ± 10 MPa. Additionally, the degradation profiles of fabricated scaffolds are found to be influenced by both the chemical nature and product design, where Lys-PCL-based scaffolds with better porosity and lower crystallinity degraded faster than commercial PCL scaffolds. According to in vitro studies, Lys-PCL scaffolds have produced an environment that is better for cell adhesion and proliferation. Moreover, the scaffold design affects the way cells interact; Lys-PCL with zigzag geometry has demonstrated superior in vitro vitality (>90 %) and proliferation in comparison to other designs. This study emphasizes the importance of enhancing bioactivity while meeting morphology and porosity requirements in the design of scaffolds for tissue engineering applications.

中文翻译:

用于组织工程应用的可生物降解和可 3D 打印的赖氨酸功能化聚己内酯支架

组织工程 (TE) 激发了人们对创建具有可定制特性和功能性生物活性位点的支架的兴趣。然而,由于医疗实践和制造技术的限制,在体外复制具有适当结构和生物活性的复杂多孔框架具有挑战性。为了应对这些挑战,我们在此提出了一种绿色方法,涉及氨基酸(赖氨酸)引发ε-己内酯(CL)聚合,以生产具有适合 TE 应用的活性位点的改性聚己内酯(PCL)。此外,为了更好地了解形态和孔隙率对细胞附着和增殖的影响,设计和制造了具有均匀且互连的孔的不同几何形状的支架,并与商业 PCL 进行比较,评估了它们的性能。通过显微计算机断层扫描 (micro-CT) 对支架形态和复杂的内部微结构进行成像,显示孔径在 ~300–900 μm 范围内,孔隙率在 30% 到 70% 范围内,同时基于支架的几何形状抗压强度从 143 ± 19 到 214 ± 10 MPa。此外,发现制造的支架的降解曲线受到化学性质和产品设计的影响,其中基于Lys-PCL的支架具有更好的孔隙率和更低的结晶度,其降解速度比商业PCL支架更快。根据体外研究,Lys-PCL支架创造了一个更有利于细胞粘附和增殖的环境。此外,支架设计会影响细胞相互作用的方式。与其他设计相比,具有锯齿形几何结构的 Lys-PCL 已表现出卓越的体外活力 (>90%) 和增殖能力。这项研究强调了在组织工程应用支架设计中增强生物活性同时满足形态和孔隙率要求的重要性。
更新日期:2024-02-28
down
wechat
bug