当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling enzymatic and electrochemical cascade reactions at the three‐phase interface enzyme electrode
AIChE Journal ( IF 3.7 ) Pub Date : 2024-03-07 , DOI: 10.1002/aic.18420
Siyu Zou 1 , Jie Xiao 1, 2 , Xinjian Feng 1
Affiliation  

The enzyme electrode based on enzymatic and electrochemical cascade reactions is a golden approach for detecting various biomarkers. How the interfacial architectures of a promising three‐phase interface enzyme electrode can influence the cascade reactions and electrode performance, however, remains unclear. In this study, a mathematical model has been developed to describe intraphase and interphase mass transfer, coupled with cascade reactions. The results reveal that the interfacial architectures determine the mass transfer of oxygen (substrate of oxidase) and H2O2 (enzymatic product) in the cascade reactions, hence affecting the electrode current. Generally, thinner pore walls facilitate the mass transfer of oxygen, thereby enhancing the enzymatic kinetics and H2O2 production. Meanwhile, smaller pore sizes shorten the diffusion pathway of H2O2 to the electrode surface, thereby increasing the electrocatalytic reaction rate. This work provides an efficient in silico tool for the design of high‐performance three‐phase enzyme electrodes.

中文翻译:

三相界面酶电极上的酶促和电化学级联反应建模

基于酶促和电化学级联反应的酶电极是检测各种生物标志物的黄金方法。然而,有前景的三相界面酶电极的界面结构如何影响级联反应和电极性能仍不清楚。在这项研究中,开发了一个数学模型来描述相内和相间传质以及级联反应。结果表明,界面结构决定了氧(氧化酶的底物)和 H 的传质22(酶产物)参与级联反应,从而影响电极电流。一般来说,较薄的孔壁有利于氧气的传质,从而增强酶动力学和 H22生产。同时,较小的孔径缩短了H的扩散路径22到电极表面,从而提高电催化反应速率。这项工作为高性能三相酶电极的设计提供了一种有效的计算机工具。
更新日期:2024-03-07
down
wechat
bug