当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of artificial molecular motor inheriting directionality and scalability
Biophysical Journal ( IF 3.4 ) Pub Date : 2024-02-29 , DOI: 10.1016/j.bpj.2024.02.026
Kenta I. Ito , Yusuke Sato , Shoichi Toyabe

Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.

中文翻译:

继承方向性和可扩展性的人工分子马达设计

实现具有自主功能和高性能的人造分子马达是生物物理学的重大挑战。这种电机不仅为生物技术提供了新的视角,而且为自下而上阐明生物分子电机提供了一种新方法。方向性和可扩展性是实际应用的关键因素。然而,同时实现两者仍然具有挑战性。在这项研究中,我们提出了一种新颖的旋转电机设计,该电机可以使用当前可用的技术 DNA 折纸来制造,并通过使用实际参数进行模拟来验证其功能。我们证明电机沿结构不对称定义的方向单向且持续旋转,这会导致电机运动中的动力学不对称。该电机还具有可扩展性,因此增加电机和定子之间的连接数量可以实现更大的速度、运行长度和失速力。
更新日期:2024-02-29
down
wechat
bug