当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic temperature control in microfluidics for in vivo imaging of cold-sensing in C. elegans
Biophysical Journal ( IF 3.4 ) Pub Date : 2024-03-06 , DOI: 10.1016/j.bpj.2024.03.007
Sol Ah Lee , Yongmin Cho , William R. Schafer , Hang Lu

The ability to perceive temperature is crucial for most animals. It enables them to maintain their body temperature and swiftly react to noxiously cold or hot objects. is a powerful genetic model for the study of thermosensation as its simple nervous system is well characterized and its transparent body is suited for in vivo functional imaging of neurons. The behavior triggered by experience-dependent thermosensation has been well studied in under temperature-gradient environments. However, how senses temperature via its nervous system is not well understood due to the limitations of currently available technologies. One major bottleneck is the difficulty in creating fast temperature changes, especially cold stimuli. Here, we developed a microfluidic-based platform that allowed the in vivo functional imaging of responding to well-controlled temporally varying temperature stimulation by rapidly switching fluid streams at different temperatures. We used computational models to enable rational design and optimization of experimental conditions. We validated the design and utility of our system with studies of the functional role of thermosensory neurons. We showed that the responses of PVD polymodal nociceptor neurons observed in previous studies can be recapitulated. Further, we highlighted how this platform may be used to dissect neuronal circuits with an example of activity recording in PVC interneurons. Both of these neuron types show sensitization phenotypes. We envision that both the engineered system and the findings in this work will spur further studies of molecular and cellular mechanisms underlying cold-sensing through the nervous system.

中文翻译:

微流体中的动态温度控制用于秀丽隐杆线虫体内冷传感成像

感知温度的能力对于大多数动物来说至关重要。它使它们能够保持体温并对有害的冷或热物体迅速做出反应。是用于研究热感觉的强大遗传模型,因为其简单的神经系统得到了很好的表征,并且其透明的身体适合神经元的体内功能成像。在温度梯度环境下,由依赖于经验的热感觉触发的行为已经得到了很好的研究。然而,由于现有技术的限制,人们对如何通过神经系统感知温度还没有很好的了解。一个主要瓶颈是难以产生快速的温度变化,尤其是冷刺激。在这里,我们开发了一个基于微流体的平台,通过在不同温度下快速切换流体流,允许体内功能成像响应良好控制的时间变化的温度刺激。我们使用计算模型来合理设计和优化实验条件。我们通过研究热感觉神经元的功能作用验证了我们系统的设计和实用性。我们表明,在之前的研究中观察到的 PVD ​​多模式伤害感受器神经元的反应是可以重现的。此外,我们通过 PVC 中间神经元活动记录的示例强调了如何使用该平台来剖析神经元回路。这两种神经元类型都显示出敏化表型。我们预计,工程系统和这项工作的发现将促进对神经系统冷感知的分子和细胞机制的进一步研究。
更新日期:2024-03-06
down
wechat
bug