当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspired interpenetrating-phase metal composites
Progress in Materials Science ( IF 37.4 ) Pub Date : 2024-03-12 , DOI: 10.1016/j.pmatsci.2024.101281
Yanyan Liu , Bingqing Chen , Zengqian Liu , Zhefeng Zhang , Robert O. Ritchie

The ingeniously complex architectures of biological materials evolved in Nature are a source of inspiration for the design of man-made materials. This has led to a major research field over the past two decades to characterize and model the properties and mechanisms induced by such hierarchical biological structures. However, the inability to manufacture synthetic structural materials incorporating these natural designs in the form of bioinspired materials has been a major “road block”. Here we examine recent processes that can serve to overcome this issue, specifically by infiltrating a metal melt into porous scaffolds of reinforcement. Indeed, the melt infiltration technique offers an effective means for constructing bioinspired architectures in metallic materials, thereby affording the creation of high-performance bioinspired metal composites. The bioinspired architectures, wherein the constituents are mutually interpenetrated in 3D space often in line with specific configurations, have been proven to be effective for combining the property advantages of constituents, retarding the evolution of damage, and playing a toughening role by resisting crack propagation; as such, these effects confer a great potential towards achieving outstanding properties. This review elucidates the prerequisite conditions for melt infiltration processing, and introduces the technical routes for fabricating bioinspired metal composites via melt infiltration by highlighting the different approaches for constructing porous scaffolds of reinforcement. The formation, structure, and mechanical and functional properties of these composites are elaborated in conjunction with the state-of-the-art progress to provide a special focus on the effects of bioinspired architectures. On this basis, the existing challenges and future prospects for bioinspired metal composites are discussed and outlooked. The implementation of bioinspired designs in metallic materials by melt infiltration may afford breakthroughs in material performance with a promising potential towards engineering applications.

中文翻译:

仿生互穿相金属复合材料

在自然界中进化的生物材料的巧妙复杂的结构是人造材料设计的灵感来源。这导致了过去二十年的一个主要研究领域,即对这种分层生物结构引起的特性和机制进行表征和建模。然而,无法以仿生材料的形式制造结合这些自然设计的合成结构材料一直是一个主要的“障碍”。在这里,我们研究了可以克服这个问题的最新工艺,特别是通过将金属熔体渗透到多孔增强支架中。事实上,熔体渗透技术提供了一种在金属材料中构建仿生结构的有效方法,从而可以创建高性能仿生金属复合材料。仿生结构,其中成分在3D空间中相互渗透,通常符合特定的配置,已被证明可以有效地结合成分的性能优势,延缓损伤的演变,并通过抵抗裂纹扩展发挥增韧作用;因此,这些效应赋予了实现卓越性能的巨大潜力。本文阐明了熔体渗透加工的先决条件,并通过重点介绍了构建增强多孔支架的不同方法,介绍了通过熔体渗透制造仿生金属复合材料的技术路线。这些复合材料的形成、结构以及机械和功能特性均与最先进的进展相结合,以特别关注仿生建筑的效果。在此基础上,对仿生金属复合材料目前面临的挑战和未来前景进行了讨论和展望。通过熔体渗透在金属材料中实施仿生设计可能会在材料性能方面取得突破,并在工程应用方面具有广阔的前景。
更新日期:2024-03-12
down
wechat
bug