当前位置: X-MOL 学术Carbon Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Building stabilized Cu0.17Mn0.03V2O5−□·2.16H2O cathode enables an outstanding room-/low-temperature aqueous Zn-ion batteries
Carbon Energy ( IF 20.5 ) Pub Date : 2024-03-13 , DOI: 10.1002/cey2.512
Ao Wang 1 , Dai‐Huo Liu 1 , Lin Yang 1 , Fang Xu 1 , Dan Luo 2 , Haozhen Dou 2 , Mengqin Song 1 , Chunyan Xu 1 , Beinuo Zhang 1 , Jialin Zheng 1 , Zhongwei Chen 2 , Zhengyu Bai 1
Affiliation  

Vanadium oxide cathode materials with stable crystal structure and fast Zn2+ storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc-ion batteries. In this work, a one-step hydrothermal method was used to manipulate the bimetallic ion intercalation into the interlayer of vanadium oxide. The pre-intercalated Cu ions act as pillars to pin the vanadium oxide (V-O) layers, establishing stabilized two-dimensional channels for fast Zn2+ diffusion. The occupation of Mn ions between V-O interlayer further expands the layer spacing and increases the concentration of oxygen defects (Od), which boosts the Zn2+ diffusion kinetics. As a result, as-prepared Cu0.17Mn0.03V2O5−□·2.16H2O cathode shows outstanding Zn-storage capabilities under room- and low-temperature environments (e.g., 440.3 mAh g−1 at room temperature and 294.3 mAh g−1 at −60°C). Importantly, it shows a long cycling life and high capacity retention of 93.4% over 2500 cycles at 2 A g−1 at −60°C. Furthermore, the reversible intercalation chemistry mechanisms during discharging/charging processes were revealed via operando X-ray powder diffraction and ex situ Raman characterizations. The strategy of a couple of 3d transition metal doping provides a solution for the development of superior room-/low-temperature vanadium-based cathode materials.

中文翻译:

构建稳定的 Cu0.17Mn0.03V2O5−□·2.16H2O 阴极可实现出色的室温/低温水系锌离子电池

具有稳定晶体结构和快速Zn 2+存储能力的氧化钒正极材料对于水系锌离子电池实现优异的电化学性能极其重要。在这项工作中,采用一步水热法来控制双金属离子嵌入氧化钒夹层中。预嵌入的 Cu 离子充当固定氧化钒 (VO) 层的柱子,建立稳定的二维通道以实现 Zn 2+的快速扩散。Mn离子在VO夹层之间的占据进一步扩大了层间距并增加了氧缺陷(O d )的浓度,从而增强了Zn 2+扩散动力学。结果,所制备的Cu 0.17 Mn 0.03 V 2 O 5 -□ · 2.16H 2 O正极在室温和低温环境下表现出优异的储锌能力(例如,室温下440.3 mAh g -1和294.3 mAh g -1 )。 mAh g -1 (-60°C)。重要的是,它在-60°C、2 A g -1条件下表现出较长的循环寿命和超过2500次循环的93.4%的高容量保持率。此外,通过原位X射线粉末衍射和非原位拉曼表征揭示了放电/充电过程中的可逆插层化学机制。多种3d过渡金属掺杂策略为开发优质室温/低温钒基正极材料提供了解决方案。
更新日期:2024-03-15
down
wechat
bug