当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Process integration and thermodynamic analysis of a multi-generation system including solar-assisted biomass gasification and chemical looping ammonia generation
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2024-03-13 , DOI: 10.1016/j.enconman.2024.118263
Rujing Yan , Mou Wu , Junqiu Fan , Chengxu Sun , Jiangjiang Wang , Yu He , Hongpeng Liu , Pei Li , Jing Zhang

The Haber-Bosch process for industrial ammonia synthesis is known for its high energy consumption and significant carbon emissions. While the chemical looping ammonia generation method presents a potential alternative, it still relies on fossil fuels for the necessary reductant and reaction energy, leading to substantial carbon emissions. This paper proposes the utilization of a solar-assisted biomass gasifier in place of fossil fuels to provide the required energy. Additionally, it employs a solid oxide fuel cell to eliminate the need for an air separation unit in the nitrogen supply process. The proposed approach involves a multi-generation system that combines biomass gasification with solar thermal assistance to produce electricity, heat, cooling, and ammonia. This integrated system incorporates a solar-assisted biomass gasifier, a chemical looping ammonia generation reactor, a solid oxide fuel cell, a gas turbine, and a waste heat recovery unit. To assess the performance of the multi-generation system, a thermodynamic model is established. The model is used to analyze the sustainability of the system and the effects of gasification temperature and operating parameters of chemical looping ammonia generation on the overall performance. The results indicate that in the cooling mode, the system achieves energy and exergy efficiencies of 61.53 % and 41.31 %, respectively, with solar input, and 53.98 % and 34.68 %, respectively, without solar input. In the heating mode, the efficiencies are 57.85 % and 40.81 %, with solar input, and 48.80 % and 34.10 %, without solar input, respectively. Besides, it is shown that increasing the gasification temperature enhances the electricity output of the system, albeit at the cost of reduced ammonia yield when the temperature exceeds 973.15 K. Under optimized conditions, an ammonia production rate of 18.69 kg/h can be achieved with a biomass input rate of 360 kg/h. Also, the evaluated overall socio-ecological factor of the system is 7.24.

中文翻译:

多联产系统的工艺集成和热力学分析,包括太阳能辅助生物质气化和化学循环氨生成

工业氨合成的哈伯-博世工艺以其高能耗和大量碳排放而闻名。虽然化学循环氨生成方法提供了一种潜在的替代方案,但它仍然依赖化石燃料来提供必要的还原剂和反应能量,从而导致大量的碳排放。本文建议利用太阳能辅助生物质气化炉代替化石燃料来提供所需的能量。此外,它采用固体氧化物燃料电池,无需在氮气供应过程中使用空气分离装置。所提出的方法涉及一个多联产系统,该系统将生物质气化与太阳能热辅助相结合,以产生电力、热力、冷却和氨。该集成系统包括太阳能辅助生物质气化炉、化学循环氨发生反应器、固体氧化物燃料电池、燃气轮机和废热回收装置。为了评估多联产系统的性能,建立了热力学模型。该模型用于分析系统的可持续性以及化学循环制氨气化温度和操作参数对整体性能的影响。结果表明,在制冷模式下,有太阳能输入时,系统的能源效率和火用效率分别为 61.53% 和 41.31%,无太阳能输入时,系统的能源效率和火用效率分别为 53.98% 和 34.68%。在加热模式下,有太阳能输入时的效率分别为 57.85% 和 40.81%,无太阳能输入时的效率分别为 48.80% 和 34.10%。此外,研究表明,提高气化温度可以提高系统的发电量,但当温度超过973.15 K时,氨产率会降低。在优化条件下,氨产率可达18.69 kg/h生物量输入率为360公斤/小时。此外,系统的总体社会生态因子评估为7.24。
更新日期:2024-03-13
down
wechat
bug