当前位置: X-MOL 学术Carbon Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Yttrium- and nitrogen-doped NiCo phosphide nanosheets for high-efficiency water electrolysis
Carbon Energy ( IF 20.5 ) Pub Date : 2024-03-15 , DOI: 10.1002/cey2.522
Guangliang Chen 1 , Huiyang Xiang 2 , Yingchun Guo 1 , Jun Huang 3 , Wei Chen 3 , Zhuoyi Chen 2 , Tongtong Li 2 , Kostya (Ken) Ostrikov 4
Affiliation  

Engineering high-performance and low-cost bifunctional catalysts for H2 (hydrogen evolution reaction [HER]) and O2 (oxygen evolution reaction [OER]) evolution under industrial electrocatalytic conditions remains challenging. Here, for the first time, we use the stronger electronegativity of a rare-Earth yttrium ion (Y3+) to induce in situ NiCo-layered double-hydroxide nanosheets from NiCo foam (NCF) treated by a dielectric barrier discharge plasma NCF (PNCF), and then obtain nitrogen-doped YNiCo phosphide (N-YNiCoP/PNCF) after the phosphating process using radiofrequency plasma in nitrogen. The obtained N-YNiCoP/PNCF has a large specific surface area, rich heterointerfaces, and an optimized electronic structure, inducing high electrocatalytic activity in HER (331 mV vs. 2000 mA cm−2) and OER (464 mV vs. 2000 mA cm−2) reactions in 1 M KOH electrolyte. X-ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms, which induce much shorter bonds of Ni and Co ions and promote long-term stability of N-YNiCoP in HER and OER under the simulated industrial conditions. Meanwhile, the CoN-YP5 heterointerface formed by plasma N-doping is the active center for overall water splitting. This work expands the applications of rare-Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing high-performance transition-metal-based catalysts in the renewable energy field.

中文翻译:

用于高效水电解的钇和氮掺杂镍钴磷化物纳米片

在工业电催化条件下设计用于析氢反应[HER]和析氧反应[OER]的高性能和低成本双功能催化剂仍然具有挑战性。在这里,我们首次利用稀土钇离子 (Y 3+ ) 更强的电负性,从经过介质阻挡放电等离子体 NCF 处理的 NiCo 泡沫 (NCF) 中原位诱导出 NiCo 层状双氢氧化物纳米片 (NCF)。 PNCF),然后在氮气中使用射频等离子体进行磷化处理后得到氮掺杂的YNiCo磷化物(N-YNiCoP/PNCF)。所得的N-YNiCoP/PNCF具有较大的比表面积、丰富的异质界面和优化的电子结构,在HER(331 mV vs. 2000 mA cm -2)和OER(464 mV vs. 2000 mA cm -2 )和OER(464 mV vs. 2000 mA cm -2 )中具有高电催化活性。 -2 ) 1 M KOH 电解质中的反应。X射线吸收光谱和密度泛函理论量子化学计算表明,CoNi的配位数随着Y原子的掺入而减少,这导致Ni和Co离子的键更短,从而促进N-YNiCoP在HER和模拟工业条件下的开放教育资源。同时,等离子体N掺杂形成的CoN-YP 5异质界面是整个水分解的活性中心。这项工作拓展了稀土元素在工程双功能电催化剂中的应用,并为可再生能源领域设计高性能过渡金属基催化剂提供了新途径。
更新日期:2024-03-16
down
wechat
bug