当前位置: X-MOL 学术Carbon Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reshaping Li–Mg hybrid batteries: Epitaxial electrodeposition and spatial confinement on MgMOF substrates via the lattice-matching strategy
Carbon Energy ( IF 20.5 ) Pub Date : 2024-03-15 , DOI: 10.1002/cey2.520
Yongqin Wang 1 , Fulin Cheng 1 , Jiawen Ji 1 , Chenyang Cai 1 , Yu Fu 1
Affiliation  

The emergence of Li–Mg hybrid batteries has been receiving attention, owing to their enhanced electrochemical kinetics and reduced overpotential. Nevertheless, the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration. Herein, we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate. The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg, establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization. Moreover, the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale. Taking inspiration from the “blockchain” concept prevalent in the realm of big data, we seamlessly integrated a conductive polypyrrole framework, acting as a connecting “chain,” to interlink the “blocks” comprising the MgMOF cavities. This innovative design significantly amplified charge-transfer efficiency, thereby increasing overall electrochemical kinetics. The resulting architecture (MgMOF@PPy@CC) served as an exceptional host for heteroepitaxial Mg electrodeposition, showcasing remarkable electrostripping/plating kinetics and excellent cycling performance. Surprisingly, a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions (10 mA cm–2), maintaining operation for an extended 1200 h, surpassing previously reported benchmarks. Significantly, on coupling the MgMOF@PPy@CC anode with a Mo6S8 cathode, the assembled battery showed an extended lifespan of 10,000 cycles at 70 C, with an outstanding capacity retention of 96.23%. This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework (MOF) substrates, paving the way toward the advancement of cutting-edge batteries.

中文翻译:

重塑锂镁混合电池:通过晶格匹配策略在 MgMOF 基底上进行外延电沉积和空间限制

锂镁混合电池的出现因其增强的电化学动力学和降低的过电势而受到关注。然而,镁电沉积不均匀的持续挑战仍然是其实际集成的重大障碍。在此,我们开发了一种巧妙的方法,该方法以外延电结晶为中心,并在专门的 MgMOF 基板上精心控制镁晶体的生长。所选的 MgMOF 基板表现出对镁的强大亲和力,并显示出与镁的最小晶格失配,为成功异质外延电结晶奠定了关键先决条件。此外,MgMOF 结构中周期性电场和连续纳米通道的结合创造了一个空间受限的环境,大大促进了分子尺度上均匀的镁成核。受到大数据领域盛行的“区块链”概念的启发,我们无缝集成了导电聚吡咯框架,充当连接“链”,将组成 MgMOF 腔体的“块”互连起来。这种创新设计显着提高了电荷转移效率,从而提高了整体电化学动力学。由此产生的结构(MgMOF@PPy@CC)作为异质外延镁电沉积的特殊主体,表现出卓越的电剥离/电镀动力学和出色的循环性能。令人惊讶的是,即使在超高电流密度条件(10 mA cm –2 )下,采用 MgMOF@PPy@CC 电极的对称电池也表现出令人印象深刻的稳定性,可维持运行长达 1200 小时,超过了之前报道的基准。值得注意的是,将MgMOF@PPy@CC阳极与Mo 6 S 8阴极耦合后,组装电池在70 C下的寿命延长了10,000次,容量保持率高达96.23%。这项研究为金属有机框架(MOF)基板驱动的外延电结晶的合理设计提供了新的视角,为尖端电池的发展铺平了道路。
更新日期:2024-03-16
down
wechat
bug