当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of In2O3@CN S-type heterojunctions with defect engineering for highly efficient photocatalytic degrade atrazine: Efficacy and mechanism evaluation
Surfaces and Interfaces ( IF 6.2 ) Pub Date : 2024-03-11 , DOI: 10.1016/j.surfin.2024.104144
Wenqin Li , Jianmin Luo , Jun Liu , Liping Yang , Bin Liu , Abdukader Abdukayum , Chuanyi Wang

Developing exceptional photocatalysts with a high ability for photocarrier dissociation and photoredox reactions is crucial for effectively eliminate water pollutants, yet it remains a significant challenge. In this study, a S-type heterojunction with N defect, 2InO@CN, is constructed by incorporating InO nanoparticles onto g-CN nanosheet. The S-type charge transfer mode markedly promotes the space detachment of high-energy electron/hole and preservation on 2InO@CN, effectively suppressing the photocorrosion of InO. The optimized 2InO@CN heterojunction demonstrates superior performance. In visible light-driven photocatalytic degradation of atrazine, the efficiency reaches an impressive 81.5%. The pseudo-first-order kinetics are 12.7 times higher than those of pure CN, while maintaining excellent stability and reusability. Calculations and liquid mass measurements have revealed the primary active substances, intermediates, and photodegradation pathways in the photocatalytic process. This study not only offers a potential photocatalyst for safeguarding aquatic environments but also encourages the exploration of novel and potent CN-based S-type photocatalysts for environmental protection.

中文翻译:

缺陷工程构建In2O3@CN S型异质结高效光催化降解莠去津:功效与机理评估

开发具有高光载流子解离和光氧化还原反应能力的特殊光催化剂对于有效消除水污染物至关重要,但这仍然是一个重大挑战。在这项研究中,通过将 InO 纳米颗粒掺入 g-CN 纳米片上,构建了具有 N 缺陷的 S 型异质结 2InO@CN。S型电荷转移模式显着促进了高能电子/空穴的空间脱离和在2InO@CN上的保存,有效抑制了InO的光腐蚀。优化后的2InO@CN异质结表现出优越的性能。在可见光驱动的阿特拉津光催化降解中,效率达到了令人印象深刻的81.5%。准一级动力学比纯CN高12.7倍,同时保持优异的稳定性和可重复使用性。计算和液体质量测量揭示了光催化过程中的主要活性物质、中间体和光降解途径。这项研究不仅为保护水生环境提供了一种潜在的光催化剂,而且鼓励探索新型有效的基于CN的S型光催化剂用于环境保护。
更新日期:2024-03-11
down
wechat
bug