当前位置: X-MOL 学术Curr. Pharm. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biofilm Formation in Mycobacterial Genus; Mechanism of Biofilm Formation and Anti-Mycobacterial Biofilm Agents
Current Pharmaceutical Biotechnology ( IF 2.8 ) Pub Date : 2024-03-15 , DOI: 10.2174/0113892010277107240227054933
Sina Nasrollahian 1 , Hassan Pourmoshtagh 2 , Sahar Sabour 3 , Nahal Hadi 1 , Taher Azimi 1 , Saeed Soleiman-Meigooni 4
Affiliation  

: Mycobacterium tuberculosis, Mycobacterium leprae, and non-tuberculous mycobacteria (NTM) are among the most significant human pathogens within the Mycobacterium genus. These pathogens can infect people who come into contact with biomaterials or have chronic illnesses. A characteristic pathogenic trait of mycobacteria is the development of biofilms, which involves several molecules, such as the GroEL1 chaperone, glycopeptidolipids, and shorter-chain mycolic acids. Bacterial behavior is influenced by nutrients, ions, and carbon sources, which also play a regulatory role in biofilm development. Compared to their planktonic phase, mycobacterial biofilms are more resilient to environmental stresses and disinfectants. Mycobacteria that produce biofilms have been found in several environmental studies, particularly in water systems. NTM can cause respiratory problems in individuals with underlying illnesses such as cystic fibrosis, bronchiectasis, and old tuberculosis scars. Mycobacteria that grow slowly, like those in the Mycobacterium avium complex (MAC), or rapidly, like Mycobacterium abscessus, can be pathogens. Infections related to biomaterials represent a significant category of biofilm-associated infections, with rapidly growing mycobacteria being the most frequently identified organisms. A biofilm produced by M. tuberculosis can contribute to caseous necrosis and cavity formation in lung tissue. Additionally, M. tuberculosis forms biofilms on clinical biomaterials. Biofilm formation is a major contributor to antimicrobial resistance, providing defense against drugs that would typically be effective against these bacteria in their planktonic state. The antibiotic resistance of biofilm-forming microbes may render therapy ineffective, necessitating the physical removal of biofilms to cure the infection. Recently, new approaches have been developed with potential anti-biofilm compounds to increase treatment effectiveness. Understanding biofilms is crucial for the appropriate treatment of various NTM diseases, and the recent discovery of M. tuberculosis biofilms has opened up a new field of study. This review focuses on the biofilm formation of the Mycobacterial genus, the mechanisms of biofilm formation, and anti-mycobacterial biofilm agents.

中文翻译:

分枝杆菌属生物膜的形成;生物膜形成机制和抗分枝杆菌生物膜剂

:结核分枝杆菌、麻风分枝杆菌和非结核分枝杆菌 (NTM) 是分枝杆菌属中最重要的人类病原体。这些病原体可以感染接触生物材料或患有慢性疾病的人。分枝杆菌的一个典型致病特征是生物膜的形成,其中涉及多种分子,例如 GroEL1 伴侣、糖肽脂和短链分枝酸。细菌行为受到营养物质、离子和碳源的影响,它们也在生物膜的形成中发挥调节作用。与浮游阶段相比,分枝杆菌生物膜对环境压力和消毒剂的抵抗力更强。在多项环境研究中,特别是在水系统中,发现了产生生物膜的分枝杆菌。NTM 可能会导致患有囊性纤维化、支气管扩张和陈旧性结核疤痕等潜在疾病的个体出现呼吸系统问题。缓慢生长的分枝杆菌(如鸟分枝杆菌复合体 (MAC) 中的分枝杆菌)或快速生长的分枝杆菌(如脓肿分枝杆菌)都可能是病原体。与生物材料相关的感染是生物膜相关感染的重要类别,其中快速生长的分枝杆菌是最常识别的生物体。结核分枝杆菌产生的生物膜可导致肺组织干酪样坏死和空洞形成。此外,结核分枝杆菌在临床生物材料上形成生物膜。生物膜的形成是抗菌素耐药性的一个主要因素,它可以防御通常对这些处于浮游状态的细菌有效的药物。形成生物膜的微生物的抗生素耐药性可能会使治疗无效,因此需要物理去除生物膜来治愈感染。最近,已经开发出具有潜在抗生物膜化合物的新方法,以提高治疗效果。了解生物膜对于适当治疗各种 NTM 疾病至关重要,最近发现的结核分枝杆菌生物膜开辟了一个新的研究领域。本综述重点讨论分枝杆菌属生物膜的形成、生物膜形成的机制以及抗分枝杆菌生物膜制剂。
更新日期:2024-03-15
down
wechat
bug