当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Penning micro-trap for quantum computing
Nature ( IF 64.8 ) Pub Date : 2024-03-13 , DOI: 10.1038/s41586-024-07111-x
Shreyans Jain , Tobias Sägesser , Pavel Hrmo , Celeste Torkzaban , Martin Stadler , Robin Oswald , Chris Axline , Amado Bautista-Salvador , Christian Ospelkaus , Daniel Kienzler , Jonathan Home

Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times1,2,3. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages4, managing power dissipation5 and restricting transport and placement of ions6. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing.



中文翻译:

用于量子计算的彭宁微陷阱

由于高保真量子门和长相干时间1,2,3 ,射频陷阱中捕获的离子是实现量子计算机的主要方法之一。然而,射频的使用对缩放提出了一些挑战,包括要求芯片与高电压兼容4、管理功耗5以及限制离子的传输和放置6。在这里,我们实现了一种微制造的彭宁离子阱,通过用 3 T 磁场代替射频场来消除这些限制。我们展示了在此设置中对离子的完全量子控制,以及在芯片上方的捕获平面中任意传输离子的能力。潘宁微陷阱方法的这一独特功能开启了量子电荷耦合器件架构的修改,提高了连接性和灵活性,有助于实现大规模俘获离子量子计算、量子模拟和量子传感。

更新日期:2024-03-16
down
wechat
bug